A Novel ANN-Based Adaptive Ultrasonic Measurement System for Accurate Water Level Monitoring

Low-cost ultrasonic sensors are widely used for non-contact distance measurement problems. Speed of ultrasonic waves is greatly affected by environmental conditions such as temperature and relative humidity among a few other parameters. Presence of acoustic and electronic noise also influences an ul...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 69; číslo 6; s. 3359 - 3369
Hlavní autoři: Sahoo, Ajit Kumar, Udgata, Siba Kumar
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Low-cost ultrasonic sensors are widely used for non-contact distance measurement problems. Speed of ultrasonic waves is greatly affected by environmental conditions such as temperature and relative humidity among a few other parameters. Presence of acoustic and electronic noise also influences an ultrasonic sensor based distance measurement system. Existing standard techniques assume that the temperature and relative humidity levels remain constant throughout the measurement medium. In our proposed system, we measure water level in storage tanks of different depths, which exhibits a gradient of temperature and relative humidity across the measurement medium. Hence, the standard ultrasonic measurement system (UMS) is not able to estimate distance accurately. In this article, we propose an algorithm based on modified neural network architecture to increase the accuracy of UMS and also to extend the standard operating range of the ultrasonic sensor used. This article presents a novel approach to reduce measurement error using Levenberg-Marquardt backpropagation artificial neural network (LMBP-ANN) architecture. The proposed model is validated by comparing the actual water level at various depths under different environmental conditions with the output of the trained neural network. The measurement error in the proposed model is bounded by ±1 cm in the distance measurements ranging from 2 to 500 cm. This model is able to extend the maximum standard operating range of the ultrasonic sensor (HC-SR04 model) from 400 to 500 cm. The proposed model is evaluated using mean squared error (MSE) and <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-values to establish the effectiveness.
AbstractList Low-cost ultrasonic sensors are widely used for non-contact distance measurement problems. Speed of ultrasonic waves is greatly affected by environmental conditions such as temperature and relative humidity among a few other parameters. Presence of acoustic and electronic noise also influences an ultrasonic sensor based distance measurement system. Existing standard techniques assume that the temperature and relative humidity levels remain constant throughout the measurement medium. In our proposed system, we measure water level in storage tanks of different depths, which exhibits a gradient of temperature and relative humidity across the measurement medium. Hence, the standard ultrasonic measurement system (UMS) is not able to estimate distance accurately. In this article, we propose an algorithm based on modified neural network architecture to increase the accuracy of UMS and also to extend the standard operating range of the ultrasonic sensor used. This article presents a novel approach to reduce measurement error using Levenberg-Marquardt backpropagation artificial neural network (LMBP-ANN) architecture. The proposed model is validated by comparing the actual water level at various depths under different environmental conditions with the output of the trained neural network. The measurement error in the proposed model is bounded by ±1 cm in the distance measurements ranging from 2 to 500 cm. This model is able to extend the maximum standard operating range of the ultrasonic sensor (HC-SR04 model) from 400 to 500 cm. The proposed model is evaluated using mean squared error (MSE) and <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-values to establish the effectiveness.
Low-cost ultrasonic sensors are widely used for non-contact distance measurement problems. Speed of ultrasonic waves is greatly affected by environmental conditions such as temperature and relative humidity among a few other parameters. Presence of acoustic and electronic noise also influences an ultrasonic sensor based distance measurement system. Existing standard techniques assume that the temperature and relative humidity levels remain constant throughout the measurement medium. In our proposed system, we measure water level in storage tanks of different depths, which exhibits a gradient of temperature and relative humidity across the measurement medium. Hence, the standard ultrasonic measurement system (UMS) is not able to estimate distance accurately. In this article, we propose an algorithm based on modified neural network architecture to increase the accuracy of UMS and also to extend the standard operating range of the ultrasonic sensor used. This article presents a novel approach to reduce measurement error using Levenberg–Marquardt backpropagation artificial neural network (LMBP-ANN) architecture. The proposed model is validated by comparing the actual water level at various depths under different environmental conditions with the output of the trained neural network. The measurement error in the proposed model is bounded by ±1 cm in the distance measurements ranging from 2 to 500 cm. This model is able to extend the maximum standard operating range of the ultrasonic sensor (HC-SR04 model) from 400 to 500 cm. The proposed model is evaluated using mean squared error (MSE) and [Formula Omitted]-values to establish the effectiveness.
Author Sahoo, Ajit Kumar
Udgata, Siba Kumar
Author_xml – sequence: 1
  givenname: Ajit Kumar
  surname: Sahoo
  fullname: Sahoo, Ajit Kumar
  email: ajit@uohyd.ac.in
  organization: School of Computer and Information Sciences, University of Hyderabad, Hyderabad, India
– sequence: 2
  givenname: Siba Kumar
  surname: Udgata
  fullname: Udgata, Siba Kumar
  email: udgata@uohyd.ac.in
  organization: School of Computer and Information Sciences, University of Hyderabad, Hyderabad, India
BookMark eNp9kE1rAjEQhkOxULW9F3oJ9Lw2yWazm-NW-iGoPVTppRCycbas6MYmWcF_34jSQw-9zBxmnveFZ4B6rW0BoVtKRpQS-bCYzEaMUDliMpUyZReoT7MsT6QQrIf6hNAikTwTV2jg_ZoQkgue99Fnied2DxtczufJo_awwuVK70KzB7zcBKe9bRuDZ6B952ALbcDvBx9gi2vrcGlM53QA_BGHw1M4Js0iEaxr2q9rdFnrjYeb8x6i5fPTYvyaTN9eJuNymhgmaUi0loaKKqu0kbXUvJZ5CrzODa0zmWowQlIAbfKUG2o4j9dapAWvVlVmCGfpEN2fcnfOfnfgg1rbzrWxUjFOGJdCxqAhIqcv46z3Dmq1c81Wu4OiRB0dquhQHR2qs8OIiD-IaYIOjW2jmWbzH3h3AhsA-O0pCpZnokh_ALBsgO8
CODEN IEIMAO
CitedBy_id crossref_primary_10_3390_mi13040520
crossref_primary_10_1109_JSEN_2023_3340226
crossref_primary_10_1016_j_measurement_2022_111035
crossref_primary_10_3390_s24237699
crossref_primary_10_1007_s13369_024_09092_5
crossref_primary_10_1108_IR_07_2020_0148
crossref_primary_10_3390_mi16010061
crossref_primary_10_1109_JSEN_2021_3127127
crossref_primary_10_1007_s12065_020_00524_3
crossref_primary_10_1049_smt2_12203
crossref_primary_10_1109_TIM_2022_3214282
crossref_primary_10_1109_JSEN_2022_3223671
crossref_primary_10_1109_TASE_2025_3594752
crossref_primary_10_1002_tee_23968
crossref_primary_10_1007_s11581_025_06227_y
crossref_primary_10_1177_01423312241285952
crossref_primary_10_1016_j_flowmeasinst_2022_102290
crossref_primary_10_3390_electronics14071393
crossref_primary_10_1155_2022_1425952
crossref_primary_10_1109_JSEN_2023_3324502
crossref_primary_10_1109_TIM_2021_3104375
crossref_primary_10_1109_TIM_2025_3554324
crossref_primary_10_3390_s24113404
crossref_primary_10_1016_j_flowmeasinst_2022_102295
crossref_primary_10_3390_s24072114
crossref_primary_10_3390_computation12020029
crossref_primary_10_1109_JSEN_2021_3081012
crossref_primary_10_1109_ACCESS_2023_3324548
crossref_primary_10_1016_j_flowmeasinst_2021_101940
crossref_primary_10_3390_w16172476
crossref_primary_10_1109_TIM_2024_3370780
crossref_primary_10_3390_s21061936
crossref_primary_10_1016_j_engappai_2023_107235
crossref_primary_10_1016_j_mechmachtheory_2021_104531
crossref_primary_10_3390_su14095512
crossref_primary_10_1007_s12040_023_02172_4
crossref_primary_10_1590_1807_1929_agriambi_v27n8p577_584
crossref_primary_10_1016_j_precisioneng_2025_01_025
crossref_primary_10_1109_TIM_2023_3246517
crossref_primary_10_1016_j_cherd_2024_08_005
crossref_primary_10_1007_s00542_024_05771_3
crossref_primary_10_3390_math10183233
crossref_primary_10_1016_j_measurement_2023_113404
crossref_primary_10_1007_s11042_023_15298_w
crossref_primary_10_1109_TIA_2023_3299886
crossref_primary_10_1016_j_procs_2024_04_060
crossref_primary_10_1049_iet_smt_2020_0009
crossref_primary_10_1109_TIM_2025_3578177
crossref_primary_10_1109_TIE_2021_3114740
Cites_doi 10.1121/1.395521
10.1109/TIE.1982.356688
10.1016/j.measurement.2016.04.019
10.1016/0263-2241(94)00034-5
10.1016/j.sna.2010.05.005
10.1007/BF00821045
10.1109/ACCESS.2018.2843564
10.1016/0893-6080(91)90009-T
10.3390/s18093111
10.3390/s18010002
10.3390/s100807421
10.1080/02564602.2018.1471364
10.1109/19.126639
10.3390/s17040706
10.1121/1.405827
10.1177/0020294014546943
10.5643/9781606504413
10.1088/0957-0233/13/8/201
10.1109/JSEN.2001.936931
10.1109/19.85348
10.1007/BFb0067700
10.1109/IMTC.1993.382566
10.1109/JSEN.2016.2592359
10.1109/19.492808
10.1016/0893-6080(89)90020-8
10.3390/j2020016
10.1109/19.668262
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2019.2939932
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 3369
ExternalDocumentID 10_1109_TIM_2019_2939932
8827568
Genre orig-research
GrantInformation_xml – fundername: University Grant Commission (UGC), Government of India, through UGC NET JRF/SRF
– fundername: DST-Intel-IUSSTF WAQM Project
– fundername: Information Technology Research Academy (ITRA), Ministry of Electronics and Information Technology, Government of India
  funderid: 10.13039/501100008628
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-aa9c16b5bac9f9a4f973e4f7c1f593aec691eeac734c1c4473ef6384bdb5c0423
IEDL.DBID RIE
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546623300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:20:26 EDT 2025
Sat Nov 29 03:19:07 EST 2025
Tue Nov 18 21:15:22 EST 2025
Wed Aug 27 02:38:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-aa9c16b5bac9f9a4f973e4f7c1f593aec691eeac734c1c4473ef6384bdb5c0423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2402496959
PQPubID 85462
PageCount 11
ParticipantIDs crossref_primary_10_1109_TIM_2019_2939932
crossref_citationtrail_10_1109_TIM_2019_2939932
proquest_journals_2402496959
ieee_primary_8827568
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
(ref15) 2009
ref14
ref31
ref33
ref11
ref32
ref10
haykin (ref30) 1994
ref1
ref17
ref16
ref19
(ref28) 2008
ref18
schnake (ref2) 2006
(ref13) 2013
(ref36) 2017
ref24
ref26
ref25
coleman (ref29) 1999
ref22
devine (ref20) 2000
ref21
matsuya (ref23) 2018; 18
ref27
ref7
ref9
ref4
ref3
ref6
ref5
bohn (ref8) 1987; 36
References_xml – ident: ref7
  doi: 10.1121/1.395521
– ident: ref10
  doi: 10.1109/TIE.1982.356688
– ident: ref17
  doi: 10.1016/j.measurement.2016.04.019
– ident: ref4
  doi: 10.1016/0263-2241(94)00034-5
– year: 2009
  ident: ref15
  publication-title: Various Techn Liquids Solids Level Measurements
– ident: ref11
  doi: 10.1016/j.sna.2010.05.005
– ident: ref14
  doi: 10.1007/BF00821045
– ident: ref35
  doi: 10.1109/ACCESS.2018.2843564
– year: 1994
  ident: ref30
  publication-title: Neural Networks A Comprehensive Found
– ident: ref32
  doi: 10.1016/0893-6080(91)90009-T
– ident: ref19
  doi: 10.3390/s18093111
– year: 2008
  ident: ref28
  publication-title: JCGM 100 Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement (GUM)
– year: 2000
  ident: ref20
  publication-title: Radar Level Measurement the user guide
– volume: 18
  start-page: 2
  year: 2018
  ident: ref23
  article-title: Measuring liquid-level utilizing wedge wave
  publication-title: SENSORS
  doi: 10.3390/s18010002
– year: 1999
  ident: ref29
  publication-title: Experimentation validation and uncertainty analysis for engineers
– ident: ref9
  doi: 10.3390/s100807421
– ident: ref18
  doi: 10.1080/02564602.2018.1471364
– ident: ref5
  doi: 10.1109/19.126639
– year: 2013
  ident: ref13
  publication-title: The Engineer's Guide to Level Measurement
– ident: ref24
  doi: 10.3390/s17040706
– ident: ref26
  doi: 10.1121/1.405827
– ident: ref16
  doi: 10.1177/0020294014546943
– ident: ref1
  doi: 10.5643/9781606504413
– ident: ref21
  doi: 10.1088/0957-0233/13/8/201
– ident: ref3
  doi: 10.1109/JSEN.2001.936931
– ident: ref6
  doi: 10.1109/19.85348
– ident: ref33
  doi: 10.1007/BFb0067700
– ident: ref27
  doi: 10.1109/IMTC.1993.382566
– year: 2006
  ident: ref2
  publication-title: Liquid Level Measurement-Basics 101
– ident: ref12
  doi: 10.1109/JSEN.2016.2592359
– ident: ref25
  doi: 10.1109/19.492808
– ident: ref31
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref34
  doi: 10.3390/j2020016
– ident: ref22
  doi: 10.1109/19.668262
– year: 2017
  ident: ref36
  publication-title: Matlab
– volume: 36
  start-page: 223
  year: 1987
  ident: ref8
  article-title: Environmental effects on the speed of sound
  publication-title: J Audio Eng Soc
SSID ssj0007647
Score 2.5122557
Snippet Low-cost ultrasonic sensors are widely used for non-contact distance measurement problems. Speed of ultrasonic waves is greatly affected by environmental...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3359
SubjectTerms Acoustic noise
Acoustics
Adaptive systems
Algorithms
Artificial neural network (ANN)
Artificial neural networks
Back propagation
Computer architecture
Distance measurement
Error analysis
Error reduction
Humidity
Level measurement
Neural networks
Relative humidity
Sensors
Storage tanks
temperature
Temperature measurement
Temperature sensors
ultrasonic measurement system (UMS)
ultrasonic sensor
Ultrasonic variables measurement
Water levels
Water tanks
Title A Novel ANN-Based Adaptive Ultrasonic Measurement System for Accurate Water Level Monitoring
URI https://ieeexplore.ieee.org/document/8827568
https://www.proquest.com/docview/2402496959
Volume 69
WOSCitedRecordID wos000546623300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9UTjgfvPPjuPX0yIMvgnU3bZp0HvcORUHLPSj6IJR0moAgu7If_v1O0u56ohzcSyk0oSW_zldm8huAQ-2pQJvLpLbEAYovGpY5yhMaFNZbg-QpUuZfmrIs7u7wzwocL8_COOdi8Zk7Cbcxl9-MaR62yvrsDZpcF6uwaoxuz2otta7RquXHlCzA7BUsUpID7F9fXIUaLjxh08bmOH1jgmJPlXeKOFqXsy__911fYbPzIsWwhX0LVtxoGzb-4hbchvVY20nTHbgfinL87Hh4WSa_2Go1YtjYp6DnxM3jbGKngR5XXL3uFoqWx1ywQyuGRPNAJyFu-TIRl6HISLSaILxoF27OTq9_nyddU4WEUpSzxFokqeucsUGPVnk0mVPekPQ5ZtaRRulYG5tMkSSl-KlnGVV1U-cUimi-wdpoPHLfQSidW8MeZyalVTJtbFo3JktrndqirpF60F-sc0Ud43hofPFYxchjgBUjUwVkqg6ZHhwtZzy1bBv_GLsTkFiO60Dowf4CyqoTx2kVUkgKNea49_GsH_A5DYF03F7Zh7XZZO4O4BM9zx6mk5_xT3sBMDbRWQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH90Wce2w7q2G83WtTr0UqibyJYtv2M2VlqWmB5S1kPByM8SDEpS8vX390l2so2Vwi7GYAkb_fw-9fR7ACeZoxxNKqPKEAcoLq9Z5iiNqJ8bZzSSo0CZP9RFkd_e4vUWnG3OwlhrQ_GZPfe3YS-_ntLSp8p67A3qNMtfwEvfOas9rbXRuzpTDUOmZBFmv2C9KdnH3vhq5Ku48JyNGxvk-C8jFLqq_KOKg3252Pm_L3sP71o_Ugwa4Hdhy0724O0f7IJ78CpUd9J8H-4GopiuLA8viugr261aDGrz4DWduLlfzMzcE-SK0e98oWiYzAW7tGJAtPSEEuInX2Zi6MuMRKML_Is-wM3F9_G3y6htqxBRjHIRGYMksypldNChUQ51YpXTJF2KibGUobSsj3WiSJJS_NSxlKqqrlLyZTQfoTOZTuwBCJWlRrPPmUhplIxrE1e1TuIqi01eVUhd6K3XuaSWc9y3vrgvQ-zRx5KRKT0yZYtMF043Mx4avo1nxu57JDbjWhC6cLiGsmwFcl76TSSFGab46elZx_D6cjwalsOr4sdneBP7sDokWw6hs5gt7RfYptXi13x2FP66R0KK1KI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+ANN-Based+Adaptive+Ultrasonic+Measurement+System+for+Accurate+Water+Level+Monitoring&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Sahoo%2C+Ajit+Kumar&rft.au=Udgata%2C+Siba+Kumar&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=69&rft.issue=6&rft.spage=3359&rft.epage=3369&rft_id=info:doi/10.1109%2FTIM.2019.2939932&rft.externalDocID=8827568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon