Deep Learning-Inspired Message Passing Algorithm for Efficient Resource Allocation in Cognitive Radio Networks

Energy efficiency (EE) and spectrum efficiency (SE) have received significant attentions on optimizing the network performance in cognitive radio networks. In this paper, an EE+SE tradeoff based target is considered for the primary users (PUs) and the secondary users (SUs). First of all, considering...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on vehicular technology Ročník 68; číslo 1; s. 641 - 653
Hlavní autori: Liu, Miao, Song, Tiecheng, Hu, Jing, Yang, Jie, Gui, Guan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9545, 1939-9359
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Energy efficiency (EE) and spectrum efficiency (SE) have received significant attentions on optimizing the network performance in cognitive radio networks. In this paper, an EE+SE tradeoff based target is considered for the primary users (PUs) and the secondary users (SUs). First of all, considering the orthogonal frequency division multiple access-based resource allocation (RA) for the underlying SUs, we formulate an objective function through minimizing a weighted sum of the secondary interference power, where the network performance of both PUs and SUs are guaranteed by the constraints on quality of service, power consumption and data rate. However, it is a NP-hard problem. In order to solve it, we propose a damped three dimensional (D3D) message-passing algorithm (MPA) based on deep learning. Specifically, a feed-forward neural network is devised and an analogous back propagation algorithm is developed to learn the optimal parameters of the D3D-MPA. To improve the computational efficiency of the allocation and the learning, a suboptimal RA scheme is deduced based on a damped two dimensional MPA. Finally, simulation results are provided to confirm the effectiveness of our proposed scheme.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2018.2883669