Partial Hard Thresholding

We study iterative algorithms for compressed sensing that have an "orthogonalization" step at each iteration to keep the residual orthogonal to the span of those columns of the measurement matrix that have been selected so far. To unify the design and analysis of such algorithms, we propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 63; H. 5; S. 3029 - 3038
Hauptverfasser: Jain, Prateek, Tewari, Ambuj, Dhillon, Inderjit S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study iterative algorithms for compressed sensing that have an "orthogonalization" step at each iteration to keep the residual orthogonal to the span of those columns of the measurement matrix that have been selected so far. To unify the design and analysis of such algorithms, we propose a novel partial hard-thresholding (PHT) operator that is similar to the hard thresholding operator but restricts the amount by which the support set can change in one iteration. Using the PHT operator and its properties, we provide a general framework to prove support recovery results for iterative algorithms employing this operator as well as those employing the hard-thresholding operator. Next, based on the PHT operator, we propose a novel family of algorithms. At one end of our family of algorithms lie well-known hard thresholding algorithms iterative thresholding with inversion and hard thresholding pursuit, whereas at the other end, we get a novel algorithm that we call orthogonal matching pursuit with replacement (OMPR). Like the classic greedy algorithm OMP, OMPR too adds exactly one coordinate to the support of the iterate at each iteration based on the correlation with the current residual. However, unlike OMP, OMPR also removes one coordinate from the support. This simple change allows us to prove that OMPR has the best known guarantees for sparse recovery in terms of the restricted isometry property (RIP), a condition on the measurement matrix. In contrast, OMP is known to have very weak performance guarantees under RIP. Finally, we show that most of the existing "orthogonalized" iterative algorithms, such as CoSaMP, subspace pursuit, OMP, can be expressed using the PHT operator. As a pleasing consequence of our novel and generic results for the PHT operator, we provide the tightest known RIP analysis of all of the above-mentioned iterative algorithms: CoSaMP, subspace pursuit, and OMP.
AbstractList We study iterative algorithms for compressed sensing that have an “orthogonalization” step at each iteration to keep the residual orthogonal to the span of those columns of the measurement matrix that have been selected so far. To unify the design and analysis of such algorithms, we propose a novel partial hard-thresholding (PHT) operator that is similar to the hard thresholding operator but restricts the amount by which the support set can change in one iteration. Using the PHT operator and its properties, we provide a general framework to prove support recovery results for iterative algorithms employing this operator as well as those employing the hard-thresholding operator. Next, based on the PHT operator, we propose a novel family of algorithms. At one end of our family of algorithms lie well-known hard thresholding algorithms iterative thresholding with inversion and hard thresholding pursuit, whereas at the other end, we get a novel algorithm that we call orthogonal matching pursuit with replacement (OMPR). Like the classic greedy algorithm OMP, OMPR too adds exactly one coordinate to the support of the iterate at each iteration based on the correlation with the current residual. However, unlike OMP, OMPR also removes one coordinate from the support. This simple change allows us to prove that OMPR has the best known guarantees for sparse recovery in terms of the restricted isometry property (RIP), a condition on the measurement matrix. In contrast, OMP is known to have very weak performance guarantees under RIP. Finally, we show that most of the existing “orthogonalized” iterative algorithms, such as CoSaMP, subspace pursuit, OMP, can be expressed using the PHT operator. As a pleasing consequence of our novel and generic results for the PHT operator, we provide the tightest known RIP analysis of all of the above-mentioned iterative algorithms: CoSaMP, subspace pursuit, and OMP.
Author Tewari, Ambuj
Dhillon, Inderjit S.
Jain, Prateek
Author_xml – sequence: 1
  givenname: Prateek
  surname: Jain
  fullname: Jain, Prateek
  organization: Microsoft Research India, Bangalure, India
– sequence: 2
  givenname: Ambuj
  orcidid: 0000-0001-6969-7844
  surname: Tewari
  fullname: Tewari, Ambuj
  organization: Department of Statistics and Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
– sequence: 3
  givenname: Inderjit S.
  surname: Dhillon
  fullname: Dhillon, Inderjit S.
  organization: Department of Computer Science, The University of Texas at Austin, Austin, TX, USA
BookMark eNp9kE1Lw0AQhhepYFu9K14KnlNnv3ePUqwtFPQQz8smmdgtMam76cF_b0qLBw-ehoH3mZd5JmTUdi0SckthTinYx3ydzxlQPWfKKGPggoyplDqzSooRGQNQk1khzBWZpLQbViEpG5O7Nx_74JvZysdqlm8jpm3XVKH9uCaXtW8S3pznlLwvn_PFKtu8vqwXT5usZJb2mS1R6LpAAVBS462iDAxXsuIoi4pXoLmwKDkCpQVwW_DKo9YF2lrY2tZ8Sh5Od_ex-zpg6t2uO8R2qHTU2OE3oywbUnBKlbFLKWLt9jF8-vjtKLijADcIcEcB7ixgQNQfpAy970PX9tGH5j_w_gQGRPzt0cZozQz_ASzqZ8A
CODEN IETTAW
CitedBy_id crossref_primary_10_1016_j_jco_2020_101469
crossref_primary_10_3390_a12020036
crossref_primary_10_1109_TIT_2022_3188459
crossref_primary_10_3390_math11122674
crossref_primary_10_3390_s18082487
crossref_primary_10_1007_s00041_024_10131_w
crossref_primary_10_1109_LSP_2024_3426353
Cites_doi 10.1023/A:1012470815092
10.1016/j.crma.2008.03.014
10.1109/ACSSC.1993.342465
10.1109/TIT.2009.2016006
10.1093/imaiai/iau005
10.1016/j.acha.2009.04.002
10.1007/s10208-012-9135-7
10.1016/j.acha.2011.04.005
10.1007/BF03549495
10.1016/j.acha.2008.07.002
10.1109/TIT.2011.2162263
10.1007/BF02678430
10.1109/TIT.2006.871582
10.1073/pnas.0909892106
10.1109/JSTSP.2009.2039176
10.1137/100806278
10.1002/cpa.20227
10.1109/TIT.2005.858979
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2017.2686880
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 3038
ExternalDocumentID 10_1109_TIT_2017_2686880
7887728
Genre orig-research
GrantInformation_xml – fundername: NSF (for ISD) and (for AT)
  grantid: CCF-1564000; DMS-1612549
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-9ce47fbe400c18a961208365d3e5bd3d07349e53e011b039b3dae77be9f49f9f3
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399939200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Jun 29 14:05:19 EDT 2025
Sat Nov 29 03:31:37 EST 2025
Tue Nov 18 22:33:19 EST 2025
Wed Aug 27 06:31:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-9ce47fbe400c18a961208365d3e5bd3d07349e53e011b039b3dae77be9f49f9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6969-7844
PQID 1891108692
PQPubID 36024
PageCount 10
ParticipantIDs crossref_primary_10_1109_TIT_2017_2686880
ieee_primary_7887728
crossref_citationtrail_10_1109_TIT_2017_2686880
proquest_journals_1891108692
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
jain (ref22) 2011; 24
ref14
ref20
ref21
zhang (ref17) 2008
ref2
maleki (ref16) 2009
ref1
ref19
ref18
ref8
rauhut (ref10) 2008; 7
ref7
ref9
mo (ref11) 2011
ref4
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1023/A:1012470815092
– ident: ref5
  doi: 10.1016/j.crma.2008.03.014
– ident: ref8
  doi: 10.1109/ACSSC.1993.342465
– year: 2011
  ident: ref11
  article-title: Remarks on the restricted isometry property in orthogonal matching pursuit algorithm
– ident: ref15
  doi: 10.1109/TIT.2009.2016006
– ident: ref21
  doi: 10.1093/imaiai/iau005
– ident: ref13
  doi: 10.1016/j.acha.2009.04.002
– ident: ref20
  doi: 10.1007/s10208-012-9135-7
– ident: ref6
  doi: 10.1016/j.acha.2011.04.005
– volume: 7
  start-page: 197
  year: 2008
  ident: ref10
  article-title: On the impossibility of uniform sparse reconstruction using greedy methods
  publication-title: Sampling Theory Signal Image Process
  doi: 10.1007/BF03549495
– start-page: 1921
  year: 2008
  ident: ref17
  article-title: Adaptive forward-backward greedy algorithm for sparse learning with linear model
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref14
  doi: 10.1016/j.acha.2008.07.002
– ident: ref12
  doi: 10.1109/TIT.2011.2162263
– ident: ref9
  doi: 10.1007/BF02678430
– ident: ref4
  doi: 10.1109/TIT.2006.871582
– ident: ref7
  doi: 10.1073/pnas.0909892106
– ident: ref1
  doi: 10.1109/JSTSP.2009.2039176
– volume: 24
  start-page: 1215
  year: 2011
  ident: ref22
  article-title: Orthogonal matching pursuit with replacement
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref2
  doi: 10.1137/100806278
– ident: ref19
  doi: 10.1002/cpa.20227
– start-page: 236
  year: 2009
  ident: ref16
  article-title: Convergence analysis of iterative thresholding algorithms
  publication-title: Proc Allerton Conf Commun Control Comput
– ident: ref3
  doi: 10.1109/TIT.2005.858979
SSID ssj0014512
Score 2.3436227
Snippet We study iterative algorithms for compressed sensing that have an "orthogonalization" step at each iteration to keep the residual orthogonal to the span of...
We study iterative algorithms for compressed sensing that have an “orthogonalization” step at each iteration to keep the residual orthogonal to the span of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3029
SubjectTerms Algorithms
Classification algorithms
Columns (structural)
Compressed sensing
Greedy algorithms
Iterative algorithms
iterative thresholding algorithms
Matching pursuit algorithms
Minimization
Optimization techniques
Recovery
restricted isometry property
Sparse matrices
sparse recovery
Title Partial Hard Thresholding
URI https://ieeexplore.ieee.org/document/7887728
https://www.proquest.com/docview/1891108692
Volume 63
WOSCitedRecordID wos000399939200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPPlrFaJUcvAimTbJJducoYtFL6aFCb2EfExCklT78_e7mRUERvOWwu4Rv9svOZma-AbiTOjaakQmUZDpIMo2BRK2CTGrJJZNS6bBsNsGnU7FY4KwDD20tDBGVyWc0co9lLN-s9M79Khu7zDceiy50Oc-qWq02YpCkUaUMHlkC2ztHE5IMcTx_nbscLj6KM5EJJwC5dwSVPVV-fIjL02Vy8r_3OoXj2ov0Hyuzn0GHln04aTo0-DVh-3C0Jzc4AG_m9omd58L1_txacVMHn87hbfI8f3oJ6tYIgY4x2gaoKeGFIstAHQmJ1k9xMtOpYZQqw4wlboKUMrL0VSFDxYwkzhVhkWCBBbuA3nK1pEvwqYiKTBjGrSeUkBEolHUiwlS54mrFlQfjBq1c17rhrn3FR17eH0LMLb65wzev8fXgvp3xWWlm_DF24PBsx9VQejBsDJLXpNrkkUBXtJBhfPX7rGs4dGtX-YhD6G3XO7qBA_21fd-sb8v98g1RB7w-
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qFdSD1aoYrZqDF8G0STbJ7h5FLC3W0kOE3sJ-TECQVvrh73c3SUNBEbzlsMuGN_uys5mZNwB3QoVaEdSeFER5UaK4J7iSXiKUoIIIIZVfNJug4zGbTvmkAQ91LQwiFsln2LWPRSxfz9Xa_irr2cw3GrId2I2jKPTLaq06ZhDFQakNHhgKm1vHJijp8146TG0WF-2GCUuYlYDcOoSKrio_PsXF-dJv_e_NjuGo8iPdx9LwJ9DAWRtamx4NbkXZNhxuCQ6egjOxO8XMswF7NzV2XFbhpzN46z-nTwOvao7gqZAHK48rjGgu0XBQBUxw46lYoelYE4ylJtpQN-IYEzQElj7hkmiBlErkecRznpNzaM7mM7wAF_MgT5gm1PhCEWrGmTRuhB9LW14tqXSgt0ErU5VyuG1g8ZEVNwifZwbfzOKbVfg6cF_P-CxVM_4Ye2rxrMdVUDrQ2Rgkq2i1zALGbdlCwsPL32fdwv4gfR1lo-H45QoO7DpldmIHmqvFGq9hT32t3peLm2LvfANNVb-F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+Hard+Thresholding&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Jain%2C+Prateek&rft.au=Tewari%2C+Ambuj&rft.au=Dhillon%2C+Inderjit+S.&rft.date=2017-05-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=63&rft.issue=5&rft.spage=3029&rft.epage=3038&rft_id=info:doi/10.1109%2FTIT.2017.2686880&rft.externalDocID=7887728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon