Design of Fragment-Type Antenna Structure Using an Improved BPSO

An improved binary particle swarm optimization (BPSO) algorithm is proposed for the design of high-dimensional, multifunctional, and compact fragment-type antenna (FTA). First, orthogonal array-based initialization instead of randomized initialization is employed to uniformly sample the design space...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation Vol. 66; no. 2; pp. 564 - 571
Main Authors: Dong, Jian, Li, Qianqian, Deng, Lianwen
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-926X, 1558-2221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An improved binary particle swarm optimization (BPSO) algorithm is proposed for the design of high-dimensional, multifunctional, and compact fragment-type antenna (FTA). First, orthogonal array-based initialization instead of randomized initialization is employed to uniformly sample the design space for better population diversity. Then, a new transfer function with a time-variant transfer factor is proposed to improve the problem of easily falling into local optimum in basic BPSO. Experimental results of the two miniaturized FTA designs show that the proposed BPSO exhibits better convergence performance than that of other published discrete optimization algorithms and can provide excellent candidates for the internal miniaturized antenna designs in wireless and portable applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2017.2778763