Reinforcement Learning for Selective Key Applications in Power Systems: Recent Advances and Future Challenges

With large-scale integration of renewable generation and distributed energy resources, modern power systems are confronted with new operational challenges, such as growing complexity, increasing uncertainty, and aggravating volatility. Meanwhile, more and more data are becoming available owing to th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid Vol. 13; no. 4; pp. 2935 - 2958
Main Authors: Chen, Xin, Qu, Guannan, Tang, Yujie, Low, Steven, Li, Na
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1949-3053, 1949-3061
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With large-scale integration of renewable generation and distributed energy resources, modern power systems are confronted with new operational challenges, such as growing complexity, increasing uncertainty, and aggravating volatility. Meanwhile, more and more data are becoming available owing to the widespread deployment of smart meters, smart sensors, and upgraded communication networks. As a result, data-driven control techniques, especially reinforcement learning (RL), have attracted surging attention in recent years. This paper provides a comprehensive review of various RL techniques and how they can be applied to decision-making and control in power systems. In particular, we select three key applications, i.e., frequency regulation, voltage control, and energy management, as examples to illustrate RL-based models and solutions. We then present the critical issues in the application of RL, i.e., safety, robustness, scalability, and data. Several potential future directions are discussed as well.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2022.3154718