Reinforcement Learning for Selective Key Applications in Power Systems: Recent Advances and Future Challenges

With large-scale integration of renewable generation and distributed energy resources, modern power systems are confronted with new operational challenges, such as growing complexity, increasing uncertainty, and aggravating volatility. Meanwhile, more and more data are becoming available owing to th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid Vol. 13; no. 4; pp. 2935 - 2958
Main Authors: Chen, Xin, Qu, Guannan, Tang, Yujie, Low, Steven, Li, Na
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1949-3053, 1949-3061
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With large-scale integration of renewable generation and distributed energy resources, modern power systems are confronted with new operational challenges, such as growing complexity, increasing uncertainty, and aggravating volatility. Meanwhile, more and more data are becoming available owing to the widespread deployment of smart meters, smart sensors, and upgraded communication networks. As a result, data-driven control techniques, especially reinforcement learning (RL), have attracted surging attention in recent years. This paper provides a comprehensive review of various RL techniques and how they can be applied to decision-making and control in power systems. In particular, we select three key applications, i.e., frequency regulation, voltage control, and energy management, as examples to illustrate RL-based models and solutions. We then present the critical issues in the application of RL, i.e., safety, robustness, scalability, and data. Several potential future directions are discussed as well.
AbstractList With large-scale integration of renewable generation and distributed energy resources, modern power systems are confronted with new operational challenges, such as growing complexity, increasing uncertainty, and aggravating volatility. Meanwhile, more and more data are becoming available owing to the widespread deployment of smart meters, smart sensors, and upgraded communication networks. As a result, data-driven control techniques, especially reinforcement learning (RL), have attracted surging attention in recent years. This paper provides a comprehensive review of various RL techniques and how they can be applied to decision-making and control in power systems. In particular, we select three key applications, i.e., frequency regulation, voltage control, and energy management, as examples to illustrate RL-based models and solutions. We then present the critical issues in the application of RL, i.e., safety, robustness, scalability, and data. Several potential future directions are discussed as well.
Author Li, Na
Qu, Guannan
Tang, Yujie
Chen, Xin
Low, Steven
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-1357-3970
  surname: Chen
  fullname: Chen, Xin
  email: chenxin2336@gmail.com
  organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
– sequence: 2
  givenname: Guannan
  orcidid: 0000-0002-5466-3550
  surname: Qu
  fullname: Qu, Guannan
  email: gqu@andrew.cmu.edu
  organization: Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 3
  givenname: Yujie
  orcidid: 0000-0002-4921-8372
  surname: Tang
  fullname: Tang, Yujie
  email: yujietang@seas.harvard.edu
  organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
– sequence: 4
  givenname: Steven
  orcidid: 0000-0001-6476-3048
  surname: Low
  fullname: Low, Steven
  email: slow@caltech.edu
  organization: Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
– sequence: 5
  givenname: Na
  orcidid: 0000-0001-9545-3050
  surname: Li
  fullname: Li, Na
  email: nali@seas.harvard.edu
  organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
BookMark eNp9kM1PAjEQxRuDiajcTbw08Qz2a7vUGyGCRhKN4nlTurNYsnTXtmD47y1CPHhwLjOZvDeT9ztHHdc4QOiKkgGlRN3O36YDRhgbcJqJnA5PUJcqofqcSNr5nTN-hnohrEgqzrlkqovWr2Bd1XgDa3ARz0B7Z90SpxV-gxpMtFvAT7DDo7atrdHRNi5g6_BL8wVJswsR1uEOv4LZHxiVW-0MBKxdiSebuPGAxx-6rsEtIVyi00rXAXrHfoHeJ_fz8UN_9jx9HI9mfcMUjX21EMYYZoYVAWIE0zIThBMKUou8XGTlotQpU8WN0ExzmSUIC8mBVykvUOAX6OZwt_XN5wZCLFbNxrv0smAyV1yJPJdJJQ8q45sQPFSFsfEnYPTa1gUlxZ5ukegWe7rFkW4ykj_G1tu19rv_LNcHiwWAX7nKGRWE8W96q4eC
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1016_j_engappai_2023_105833
crossref_primary_10_1049_rpg2_12887
crossref_primary_10_3390_en16041608
crossref_primary_10_1016_j_enbuild_2025_116071
crossref_primary_10_1016_j_rineng_2024_102741
crossref_primary_10_1109_ACCESS_2024_3396449
crossref_primary_10_1109_TIA_2024_3435170
crossref_primary_10_1595_205651325X17458327898748
crossref_primary_10_1080_00207721_2025_2469821
crossref_primary_10_1109_TPWRS_2024_3423381
crossref_primary_10_1109_TTE_2024_3519215
crossref_primary_10_3390_en17092167
crossref_primary_10_1109_TPWRS_2024_3523262
crossref_primary_10_1109_ACCESS_2024_3439015
crossref_primary_10_1109_TPWRS_2024_3407977
crossref_primary_10_1016_j_egyai_2025_100620
crossref_primary_10_1109_TCYB_2025_3528200
crossref_primary_10_1109_JPROC_2023_3303358
crossref_primary_10_1016_j_engappai_2023_106896
crossref_primary_10_1109_ACCESS_2025_3560312
crossref_primary_10_1109_TCSII_2024_3367184
crossref_primary_10_1016_j_apenergy_2025_125541
crossref_primary_10_1109_TPWRS_2023_3319518
crossref_primary_10_1109_TSG_2022_3233766
crossref_primary_10_1080_15325008_2024_2311340
crossref_primary_10_1016_j_apenergy_2024_124155
crossref_primary_10_1080_23335777_2022_2130434
crossref_primary_10_1109_TIA_2025_3531321
crossref_primary_10_1016_j_asoc_2025_113321
crossref_primary_10_1109_TIA_2023_3326433
crossref_primary_10_3390_math11040884
crossref_primary_10_3390_en15196920
crossref_primary_10_1016_j_apenergy_2023_121740
crossref_primary_10_1016_j_asoc_2024_111878
crossref_primary_10_1109_TSP_2024_3386396
crossref_primary_10_1016_j_apenergy_2024_123507
crossref_primary_10_12688_digitaltwin_17632_2
crossref_primary_10_1016_j_rser_2024_114282
crossref_primary_10_3390_en17215425
crossref_primary_10_3390_en17215307
crossref_primary_10_1016_j_rser_2022_113052
crossref_primary_10_1109_TPWRS_2023_3298007
crossref_primary_10_1109_TTE_2025_3528255
crossref_primary_10_1016_j_eswa_2024_125017
crossref_primary_10_1016_j_egyr_2025_04_008
crossref_primary_10_1016_j_epsr_2024_110269
crossref_primary_10_1016_j_prime_2025_100940
crossref_primary_10_1109_TII_2024_3399885
crossref_primary_10_1109_TPWRS_2023_3326121
crossref_primary_10_1109_TIA_2024_3472655
crossref_primary_10_1007_s13042_023_01981_9
crossref_primary_10_1016_j_conengprac_2023_105499
crossref_primary_10_1016_j_apenergy_2025_126445
crossref_primary_10_1109_LCSYS_2023_3289435
crossref_primary_10_1109_TAC_2024_3494656
crossref_primary_10_1109_TASE_2024_3357204
crossref_primary_10_1016_j_egyr_2024_09_060
crossref_primary_10_1109_TSG_2024_3410322
crossref_primary_10_1109_TSG_2023_3304135
crossref_primary_10_1016_j_ijepes_2024_109980
crossref_primary_10_1063_5_0147592
crossref_primary_10_1016_j_ijepes_2025_110621
crossref_primary_10_1016_j_apenergy_2024_124944
crossref_primary_10_1016_j_apenergy_2024_123611
crossref_primary_10_1109_TPWRS_2023_3266773
crossref_primary_10_1109_JSYST_2023_3253041
crossref_primary_10_1088_2515_7620_adf530
crossref_primary_10_1109_TPWRS_2023_3340674
crossref_primary_10_3390_electronics14122336
crossref_primary_10_1016_j_inoche_2024_113726
crossref_primary_10_1016_j_ress_2023_109340
crossref_primary_10_1109_TSTE_2024_3452489
crossref_primary_10_3390_app15158188
crossref_primary_10_1016_j_est_2024_114805
crossref_primary_10_1109_ACCESS_2023_3337118
crossref_primary_10_1109_TII_2024_3514183
crossref_primary_10_1007_s40435_025_01709_3
crossref_primary_10_1109_TSG_2023_3343373
crossref_primary_10_1016_j_est_2025_116676
crossref_primary_10_1109_TIA_2024_3463608
crossref_primary_10_1109_TPWRS_2023_3319699
crossref_primary_10_1109_TSG_2025_3540416
crossref_primary_10_1016_j_chaos_2024_115690
crossref_primary_10_1016_j_applthermaleng_2025_125752
crossref_primary_10_1016_j_egyr_2024_09_073
crossref_primary_10_1016_j_apenergy_2024_124773
crossref_primary_10_3390_jsan14030051
crossref_primary_10_1016_j_rser_2023_113627
crossref_primary_10_1109_TSG_2023_3324474
crossref_primary_10_3390_en17092075
crossref_primary_10_1109_TSTE_2023_3330842
crossref_primary_10_1016_j_est_2024_114080
crossref_primary_10_1016_j_ijepes_2025_110879
crossref_primary_10_1016_j_rser_2025_115977
crossref_primary_10_3390_en18112959
crossref_primary_10_1016_j_eswa_2023_121070
crossref_primary_10_1016_j_epsr_2024_110648
crossref_primary_10_3390_en18030653
crossref_primary_10_1109_TSG_2024_3388258
crossref_primary_10_1109_TSTE_2025_3550563
crossref_primary_10_1016_j_rser_2025_116022
crossref_primary_10_1109_TSG_2024_3396435
crossref_primary_10_1016_j_epsr_2025_111455
crossref_primary_10_1109_TSG_2024_3399705
crossref_primary_10_1145_3727112
crossref_primary_10_3389_fnbot_2024_1364587
crossref_primary_10_1016_j_arcontrol_2025_101009
crossref_primary_10_3390_en15176392
crossref_primary_10_1109_TSG_2024_3377910
crossref_primary_10_1016_j_tej_2022_107130
crossref_primary_10_1109_TIA_2024_3462900
crossref_primary_10_1016_j_compchemeng_2023_108413
crossref_primary_10_1109_LCSYS_2023_3332297
crossref_primary_10_1016_j_jobe_2024_111030
crossref_primary_10_1109_ACCESS_2023_3280558
crossref_primary_10_3390_app15073638
crossref_primary_10_1016_j_trac_2024_117852
crossref_primary_10_1038_s41598_025_03310_2
crossref_primary_10_1109_ACCESS_2025_3609317
crossref_primary_10_1109_TII_2025_3567398
crossref_primary_10_1109_ACCESS_2022_3226446
crossref_primary_10_3390_en18071809
crossref_primary_10_3390_en16052371
crossref_primary_10_1109_TSG_2024_3466768
crossref_primary_10_1016_j_apenergy_2024_124351
crossref_primary_10_1016_j_apenergy_2024_124753
crossref_primary_10_1016_j_ijepes_2025_110691
crossref_primary_10_1016_j_ijepes_2024_110279
crossref_primary_10_1109_TSG_2025_3564105
crossref_primary_10_1016_j_knosys_2025_113844
crossref_primary_10_1016_j_sysconle_2024_105753
crossref_primary_10_1109_TPWRS_2023_3320172
crossref_primary_10_1016_j_segan_2024_101580
crossref_primary_10_1109_TSTE_2024_3376369
crossref_primary_10_1088_2516_1083_acb987
crossref_primary_10_1109_JAS_2024_124218
crossref_primary_10_1109_TSG_2022_3222323
crossref_primary_10_1109_TTE_2024_3434750
crossref_primary_10_1109_TSG_2022_3169361
crossref_primary_10_1109_LCSYS_2024_3408068
crossref_primary_10_1016_j_automatica_2023_111364
crossref_primary_10_1109_TPWRS_2024_3496936
crossref_primary_10_3390_app13126937
crossref_primary_10_1016_j_compeleceng_2024_109417
crossref_primary_10_1088_1361_6668_ad3d10
crossref_primary_10_1109_ACCESS_2025_3584719
crossref_primary_10_1007_s10994_023_06422_w
crossref_primary_10_1016_j_apenergy_2025_126409
crossref_primary_10_1109_TPWRS_2022_3220799
crossref_primary_10_32604_ee_2024_047794
crossref_primary_10_1109_TPWRS_2023_3289334
crossref_primary_10_1109_TSMC_2024_3427646
crossref_primary_10_3390_electronics14142826
crossref_primary_10_1007_s42452_025_06509_0
crossref_primary_10_1109_TCNS_2023_3338240
crossref_primary_10_1109_JAS_2023_123135
crossref_primary_10_1109_JSYST_2022_3222262
crossref_primary_10_1016_j_apenergy_2022_120500
crossref_primary_10_3390_electronics12102219
crossref_primary_10_1016_j_apenergy_2024_124970
crossref_primary_10_1016_j_segan_2025_101826
crossref_primary_10_1016_j_egyr_2025_01_002
crossref_primary_10_1109_JPROC_2025_3584656
crossref_primary_10_1016_j_segan_2024_101402
crossref_primary_10_1016_j_apenergy_2025_126018
crossref_primary_10_1109_ACCESS_2023_3249151
crossref_primary_10_1109_ACCESS_2023_3321135
crossref_primary_10_3390_en15228739
crossref_primary_10_3390_en18061380
crossref_primary_10_1109_JAS_2023_123126
crossref_primary_10_1016_j_apenergy_2023_120759
crossref_primary_10_1016_j_eswa_2023_120495
Cites_doi 10.1109/TSG.2019.2945691
10.1109/TSG.2019.2936142
10.1109/TPWRS.2011.2157180
10.17775/CSEEJPES.2019.00920
10.1038/nature16961
10.1109/PESGM41954.2020.9281614
10.1016/j.egyai.2021.100092
10.1162/0899766053011528
10.1145/3054912
10.1109/TSG.2019.2962625
10.1109/TCNS.2020.3024489
10.1109/JIOT.2020.2992117
10.1109/TPWRS.2004.831259
10.1109/TSG.2020.2976771
10.1109/TSG.2020.3010130
10.1109/TSG.2019.2924025
10.1145/3061639.3062224
10.1109/ISGTEurope.2012.6465777
10.1109/TPWRS.2020.2990179
10.1109/TSG.2019.2933502
10.1109/TSG.2019.2942593
10.1201/9781315140223
10.1109/JPROC.2020.2993787
10.1109/TSG.2020.3014055
10.1049/iet-gtd.2016.1734
10.1007/978-3-030-60990-0_12
10.1016/j.ifacol.2019.08.164
10.1109/TETCI.2020.2964886
10.1109/TPWRS.2020.3000652
10.1145/2939672.2945397
10.1109/TPWRS.2019.2919522
10.1109/TSG.2017.2679238
10.1109/TIE.2017.2668983
10.1109/TSG.2020.3011739
10.1016/j.apenergy.2020.114772
10.1109/TSG.2019.2955437
10.1109/ACCESS.2020.3019535
10.1109/ACCESS.2021.3064354
10.1109/TSG.2021.3052998
10.1111/j.1541-0420.2011.01572.x
10.1109/TAC.2017.2713529
10.1162/neco.1997.9.8.1735
10.1177/0278364913495721
10.1109/TIE.2015.2420792
10.1007/BF00993306
10.1109/ACCESS.2019.2933020
10.1023/A:1022140919877
10.1007/BF00992698
10.23919/ACC53348.2022.9867476
10.1109/TSG.2019.2952331
10.1109/9.580874
10.1109/TII.2011.2166794
10.35833/MPCE.2020.000557
10.1609/aaai.v35i6.16638
10.1109/ACCESS.2019.2946282
10.1109/JIOT.2020.2966232
10.1016/j.energy.2018.04.042
10.1201/b10869
10.1109/JSYST.2019.2931879
10.1109/TSG.2020.2970768
10.23919/ACC.2019.8814865
10.1109/TPWRS.2019.2941134
10.1109/TPWRS.2014.2357079
10.1109/JIOT.2019.2957289
10.1109/TPWRS.2020.2973761
10.1109/TIT.2021.3120096
10.1109/TPWRS.2021.3092220
10.1214/aoms/1177729586
10.1561/2200000086
10.1109/TSG.2021.3090039
10.1109/TSG.2021.3058996
10.1007/s10994-023-06303-2
10.1109/TSG.2019.2951769
10.1007/978-3-642-27645-3_2
10.1201/9781351006620-6
10.1126/science.1127647
10.35833/MPCE.2020.000522
10.1049/iet-gtd.2019.0218
10.1109/CDC.2018.8619829
10.1109/TSG.2020.3005270
10.35833/MPCE.2020.000552
10.1109/TSG.2018.2879572
10.2352/ISSN.2470-1173.2017.19.AVM-023
10.1142/9789814360616_0007
10.1109/ACCESS.2020.3041007
10.1109/TSG.2020.2972208
10.1109/TPWRS.2019.2948132
10.1049/iet-gtd.2019.0554
10.1109/TPWRS.2020.2999890
10.1109/TPWRS.2020.2987292
10.1109/EI250167.2020.9346692
10.1109/PowerTech46648.2021.9494982
10.1109/TSG.2020.2996274
10.1109/TPWRS.2018.2881359
10.1109/TPWRS.2019.2931685
10.1109/CDC.2018.8619572
10.1287/opre.1050.0216
10.1109/TSG.2021.3060027
10.1109/TSG.2020.2971427
10.1109/ACCESS.2019.2940005
10.1109/TSG.2018.2834219
10.1609/aaai.v33i01.33013387
10.1109/ACCESS.2020.2974286
10.1109/TNNLS.2018.2801880
10.17775/CSEEJPES.2019.02890
10.1287/moor.1040.0129
10.1109/TSG.2020.3035127
10.1109/ACCESS.2019.2894756
10.1109/TSG.2019.2930299
10.1109/TSG.2019.2933191
10.1016/j.apenergy.2021.117634
10.1109/LCSYS.2020.3003190
10.1109/TNNLS.2019.2955857
10.1109/TGCN.2021.3061789
10.1016/j.arcontrol.2019.09.008
10.1109/TSG.2020.2986333
10.1038/nature14539
10.1109/TSG.2018.2790704
10.1016/j.arcontrol.2020.03.001
10.1109/TPWRS.2019.2897948
10.1561/2200000070
10.1109/TSG.2020.2978061
10.1109/TEC.2020.2990937
10.1109/ACCESS.2021.3060620
10.1609/aaai.v30i1.10295
10.3390/en13051250
10.1109/CDC40024.2019.9029268
10.1038/nature14236
10.1109/TSG.2020.3041620
10.15607/RSS.2014.X.031
10.21105/joss.02435
10.1016/j.automatica.2013.09.043
10.1109/TII.2020.3001095
10.1109/TSG.2019.2909266
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2022.3154718
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 2958
ExternalDocumentID 10_1109_TSG_2022_3154718
9721402
Genre orig-research
GrantInformation_xml – fundername: Caltech Center for Autonomous Systems and Technologies (CAST)
– fundername: NSF AI Institute
  grantid: 2112085
– fundername: NSF
  grantid: ECCS-1931662; AitF-1637598; CNS-1518941
  funderid: 10.13039/100000001
– fundername: Cyber-Physical Systems (CPS)
  grantid: ECCS-1932611
– fundername: PIMCO Fellowship
– fundername: Resnick Sustainability Institute for Science, Energy and Sustainability, California Institute of Technology; Resnick Sustainability Institute
  funderid: 10.13039/100007287
– fundername: Amazon AI4Science Fellowship
– fundername: NSF CAREER
  grantid: ECCS-1553407
  funderid: 10.13039/100000001
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-9b4ccc2c8f0e0c42a6540301e6a47db5dbda194f3c4a2a365110b63e3f061e1e3
IEDL.DBID RIE
ISICitedReferencesCount 231
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000814692300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3053
IngestDate Mon Jun 30 09:38:52 EDT 2025
Tue Nov 18 22:32:09 EST 2025
Sat Nov 29 03:46:00 EST 2025
Wed Aug 27 02:23:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-9b4ccc2c8f0e0c42a6540301e6a47db5dbda194f3c4a2a365110b63e3f061e1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6476-3048
0000-0002-4921-8372
0000-0001-9545-3050
0000-0002-1357-3970
0000-0002-5466-3550
PQID 2679394776
PQPubID 2040408
PageCount 24
ParticipantIDs ieee_primary_9721402
crossref_citationtrail_10_1109_TSG_2022_3154718
crossref_primary_10_1109_TSG_2022_3154718
proquest_journals_2679394776
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Wang (ref39) 2017
ref59
Cui (ref57) 2020
ref58
ref55
Krueger (ref35) 2020
Jaksch (ref17) 2010; 11
Paszke (ref161) 2019; 32
ref45
ref47
Achiam (ref123)
ref44
Tessler (ref170) 2018
ref49
(ref102) 2006
ref8
ref7
Mankowitz (ref181) 2019
ref9
ref4
ref3
Dertat (ref46) 2017
ref6
ref5
ref100
ref101
ref40
Garcıa (ref168) 2015; 16
ref36
ref30
Abadi (ref160)
Ernst (ref31) 2005; 6
Ng (ref37); 1
Marot (ref156) 2021
ref22
Mukherjee (ref86) 2021
Derman (ref185) 2018
ref21
Fan (ref159) 2021
Levine (ref34) 2020
Schulman (ref54) 2017
Berkenkamp (ref164)
Lee (ref80) 2021
ref128
ref129
ref126
ref96
ref127
ref124
Fan (ref48)
ref125
Pan (ref180) 2021
Qin (ref172)
Sutton (ref28)
ref93
ref133
ref92
ref134
Barto (ref199) 2003; 13
ref95
ref131
ref94
ref132
ref130
ref91
ref90
Verma (ref200)
ref89
ref139
ref137
ref85
ref138
ref88
ref135
ref87
ref136
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref76
ref103
Agarwal (ref20)
Cheung (ref15)
ref71
ref111
ref70
ref112
ref73
ref72
ref110
Bertsekas (ref12) 2012
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
Watkins (ref24) 1992; 8
ref66
ref113
ref65
ref114
Degris (ref27) 2012
Li (ref153) 2020
(ref163) 2021
Ghavamzadeh (ref198) 2016
Agarwal (ref33)
Srikant (ref23) 2019
ref60
ref122
ref62
ref120
ref61
ref121
Lin (ref187) 2020
ref169
ref178
ref176
ref173
ref174
ref171
Wang (ref50)
ref179
ref188
ref189
ref182
Zhang (ref184)
ref183
ref148
ref149
ref146
Mnih (ref51)
ref147
Lagoudakis (ref32) 2003; 4
ref155
Goodfellow (ref42) 2016
ref151
ref152
Silver (ref29)
Schulman (ref53)
ref150
ref158
Pattanaik (ref177) 2017
Brockman (ref154) 2016
Bevrani (ref56) 2017
ref165
ref162
(ref43) 2021
ref13
Fu (ref38) 2017
ref11
ref10
ref16
ref19
ref18
Wang (ref196) 2016
Achiam (ref175) 2017
Qu (ref186); 1
Henri (ref157) 2020
Chow (ref166) 2018
Fan (ref167) 2019
Sutton (ref2) 2018
Qu (ref191) 2020
Sun (ref41) 2019
Liu (ref98) 2021
Lecarpentier (ref14) 2019
ref1
Rummery (ref26) 1994
ref192
ref190
Pinto (ref97) 2017
ref193
ref194
Zhuo (ref197) 2019
Qu (ref25)
Che (ref195)
Parisotto (ref99) 2015
Haarnoja (ref52) 2018
References_xml – start-page: 1
  volume-title: Proc. ICLR
  ident: ref195
  article-title: Combining model-based and model-free RL via multi-step control variates
– start-page: 486
  volume-title: Proc. Learn. Dyn. Control
  ident: ref48
  article-title: A theoretical analysis of deep Q-learning
– ident: ref78
  doi: 10.1109/TSG.2019.2945691
– year: 2015
  ident: ref99
  article-title: Actor-mimic: Deep multitask and transfer reinforcement learning
  publication-title: arXiv:1511.06342
– year: 2019
  ident: ref14
  article-title: Non-stationary Markov decision processes, a worst-case approach using model-based reinforcement learning, extended version
  publication-title: arXiv:1904.10090
– ident: ref140
  doi: 10.1109/TSG.2019.2936142
– ident: ref143
  doi: 10.1109/TPWRS.2011.2157180
– ident: ref8
  doi: 10.17775/CSEEJPES.2019.00920
– year: 2016
  ident: ref154
  article-title: Openai gym
  publication-title: arXiv:1606.01540
– ident: ref4
  doi: 10.1038/nature16961
– ident: ref71
  doi: 10.1109/PESGM41954.2020.9281614
– ident: ref155
  doi: 10.1016/j.egyai.2021.100092
– ident: ref169
  doi: 10.1162/0899766053011528
– ident: ref192
  doi: 10.1145/3054912
– year: 2019
  ident: ref181
  article-title: Robust reinforcement learning for continuous control with model misspecification
  publication-title: arXiv:1906.07516
– year: 2020
  ident: ref153
  article-title: Real-time aggregate flexibility via reinforcement learning
  publication-title: arXiv:2012.11261
– ident: ref93
  doi: 10.1109/TSG.2019.2962625
– ident: ref72
  doi: 10.1109/TCNS.2020.3024489
– ident: ref129
  doi: 10.1109/JIOT.2020.2992117
– ident: ref89
  doi: 10.1109/TPWRS.2004.831259
– ident: ref107
  doi: 10.1109/TSG.2020.2976771
– ident: ref85
  doi: 10.1109/TSG.2020.3010130
– ident: ref125
  doi: 10.1109/TSG.2019.2924025
– start-page: 1843
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref15
  article-title: Reinforcement learning for non-stationary Markov decision processes: The blessing of (more) optimism
– ident: ref128
  doi: 10.1145/3061639.3062224
– start-page: 104
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref33
  article-title: An optimistic perspective on offline reinforcement learning
– ident: ref100
  doi: 10.1109/ISGTEurope.2012.6465777
– ident: ref92
  doi: 10.1109/TPWRS.2020.2990179
– start-page: 1995
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref50
  article-title: Dueling network architectures for deep reinforcement learning
– ident: ref116
  doi: 10.1109/TSG.2019.2933502
– start-page: 1
  volume-title: Proc. NeurIPS
  ident: ref184
  article-title: Robust multi-agent reinforcement learning with model uncertainty
– year: 2020
  ident: ref57
  article-title: Reinforcement learning for optimal frequency control: A lyapunov approach
  publication-title: arXiv:2009.05654
– start-page: 8682
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref172
  article-title: Density constrained reinforcement learning
– ident: ref151
  doi: 10.1109/TSG.2019.2942593
– ident: ref174
  doi: 10.1201/9781315140223
– ident: ref105
  doi: 10.1109/JPROC.2020.2993787
– ident: ref132
  doi: 10.1109/TSG.2020.3014055
– ident: ref68
  doi: 10.1049/iet-gtd.2016.1734
– ident: ref55
  doi: 10.1007/978-3-030-60990-0_12
– volume-title: Applied Deep Learning—Part 3: Autoencoders
  year: 2017
  ident: ref46
– volume: 11
  start-page: 1563
  issue: 51
  year: 2010
  ident: ref17
  article-title: Near-optimal regret bounds for reinforcement learning
  publication-title: J. Mach. Learn. Res.
– ident: ref66
  doi: 10.1016/j.ifacol.2019.08.164
– ident: ref60
  doi: 10.1109/TETCI.2020.2964886
– ident: ref95
  doi: 10.1109/TPWRS.2020.3000652
– ident: ref162
  doi: 10.1145/2939672.2945397
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: ref2
– ident: ref194
  doi: 10.1109/TPWRS.2019.2919522
– ident: ref75
  doi: 10.1109/TSG.2017.2679238
– year: 2019
  ident: ref197
  article-title: Federated reinforcement learning
  publication-title: arXiv:1901.08277
– ident: ref69
  doi: 10.1109/TIE.2017.2668983
– ident: ref130
  doi: 10.1109/TSG.2020.3011739
– ident: ref87
  doi: 10.1016/j.apenergy.2020.114772
– ident: ref122
  doi: 10.1109/TSG.2019.2955437
– ident: ref59
  doi: 10.1109/ACCESS.2020.3019535
– ident: ref124
  doi: 10.1109/ACCESS.2021.3064354
– year: 2020
  ident: ref191
  article-title: Combining model-based and model-free methods for nonlinear control: A provably convergent policy gradient approach
  publication-title: arXiv:2006.07476
– year: 2017
  ident: ref175
  article-title: Constrained policy optimization
  publication-title: arXiv:1705.10528
– ident: ref84
  doi: 10.1109/TSG.2021.3052998
– start-page: 22
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref123
  article-title: Constrained policy optimization
– ident: ref7
  doi: 10.1111/j.1541-0420.2011.01572.x
– ident: ref73
  doi: 10.1109/TAC.2017.2713529
– ident: ref44
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref5
  doi: 10.1177/0278364913495721
– ident: ref145
  doi: 10.1109/TIE.2015.2420792
– volume-title: MATLAB and Reinforcement Learning Toolbox (R2021a)
  year: 2021
  ident: ref163
– ident: ref19
  doi: 10.1007/BF00993306
– year: 2017
  ident: ref39
  article-title: On the origin of deep learning
  publication-title: arXiv:1702.07800
– ident: ref147
  doi: 10.1109/ACCESS.2019.2933020
– volume: 13
  start-page: 41
  issue: 1
  year: 2003
  ident: ref199
  article-title: Recent advances in hierarchical reinforcement learning
  publication-title: Discr. Event Dyn. Syst.
  doi: 10.1023/A:1022140919877
– year: 2020
  ident: ref35
  article-title: Active reinforcement learning: Observing rewards at a cost
  publication-title: arXiv:2011.06709
– volume: 8
  start-page: 279
  issue: 3
  year: 1992
  ident: ref24
  article-title: Q-learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
– ident: ref79
  doi: 10.23919/ACC53348.2022.9867476
– ident: ref138
  doi: 10.1109/TSG.2019.2952331
– year: 2021
  ident: ref156
  article-title: Learning to run a power network challenge: A retrospective analysis
  publication-title: arXiv:2103.03104
– ident: ref21
  doi: 10.1109/9.580874
– start-page: 387
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref29
  article-title: Deterministic policy gradient algorithms
– start-page: 908
  volume-title: Advances in Neural Information Processing Systems
  ident: ref164
  article-title: Safe model-based reinforcement learning with stability guarantees
– ident: ref1
  doi: 10.1109/TII.2011.2166794
– ident: ref114
  doi: 10.35833/MPCE.2020.000557
– ident: ref190
  doi: 10.1609/aaai.v35i6.16638
– year: 2016
  ident: ref198
  article-title: Bayesian reinforcement learning: A survey
  publication-title: arXiv:1609.04436
– ident: ref142
  doi: 10.1109/ACCESS.2019.2946282
– ident: ref115
  doi: 10.1109/JIOT.2020.2966232
– ident: ref67
  doi: 10.1016/j.energy.2018.04.042
– volume-title: Intelligent Automatic Generation Control
  year: 2017
  ident: ref56
  doi: 10.1201/b10869
– year: 2018
  ident: ref52
  article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
  publication-title: arXiv:1801.01290
– ident: ref193
  doi: 10.1109/JSYST.2019.2931879
– ident: ref77
  doi: 10.1109/TSG.2020.2970768
– year: 2019
  ident: ref167
  article-title: Safety-guided deep reinforcement learning via online Gaussian process estimation
  publication-title: arXiv:1903.02526
– ident: ref176
  doi: 10.23919/ACC.2019.8814865
– ident: ref94
  doi: 10.1109/TPWRS.2019.2941134
– ident: ref70
  doi: 10.1109/TPWRS.2014.2357079
– volume: 32
  start-page: 8026
  volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: ref161
  article-title: PyTorch: An imperative style, high-performance deep learning library
– volume-title: Benefit of Demand Response in Electricity Market and Recommendations for Achieving Them
  year: 2006
  ident: ref102
– ident: ref137
  doi: 10.1109/JIOT.2019.2957289
– ident: ref149
  doi: 10.1109/TPWRS.2020.2973761
– ident: ref188
  doi: 10.1109/TIT.2021.3120096
– ident: ref117
  doi: 10.1109/TPWRS.2021.3092220
– ident: ref22
  doi: 10.1214/aoms/1177729586
– ident: ref16
  doi: 10.1561/2200000086
– ident: ref103
  doi: 10.1109/TSG.2021.3090039
– volume: 4
  start-page: 1107
  year: 2003
  ident: ref32
  article-title: Least-squares policy iteration
  publication-title: J. Mach. Learn. Res.
– ident: ref83
  doi: 10.1109/TSG.2021.3058996
– ident: ref189
  doi: 10.1007/s10994-023-06303-2
– year: 2018
  ident: ref185
  article-title: Soft-robust actor-critic policy-gradient
  publication-title: arXiv:1803.04848
– volume: 1
  start-page: 256
  volume-title: Proc. Mach. Learn. Res.
  ident: ref186
  article-title: Scalable reinforcement learning of localized policies for multi-agent networked systems
– ident: ref91
  doi: 10.1109/TSG.2019.2951769
– ident: ref30
  doi: 10.1007/978-3-642-27645-3_2
– year: 2020
  ident: ref34
  article-title: Offline reinforcement learning: Tutorial, review, and perspectives on open problems
  publication-title: arXiv:2005.01643
– year: 2021
  ident: ref80
  article-title: A graph policy network approach for Volt-VAR control in power distribution systems
  publication-title: arXiv:2109.12073
– year: 2021
  ident: ref159
  article-title: PowerGym: A reinforcement learning environment for Volt-VAR control in power distribution systems
  publication-title: arXiv:2109.03970
– ident: ref3
  doi: 10.1201/9781351006620-6
– year: 1994
  ident: ref26
  article-title: On-line Q-learning using connectionist systems
– ident: ref45
  doi: 10.1126/science.1127647
– ident: ref113
  doi: 10.35833/MPCE.2020.000522
– ident: ref63
  doi: 10.1049/iet-gtd.2019.0218
– year: 2017
  ident: ref177
  article-title: Robust deep reinforcement learning with adversarial attacks
  publication-title: arXiv:1712.03632
– start-page: 1057
  volume-title: Advances in Neural Information Processing Systems
  ident: ref28
  article-title: Policy gradient methods for reinforcement learning with function approximation
– ident: ref173
  doi: 10.1109/CDC.2018.8619829
– ident: ref141
  doi: 10.1109/TSG.2020.3005270
– ident: ref10
  doi: 10.35833/MPCE.2020.000552
– ident: ref121
  doi: 10.1109/TSG.2018.2879572
– ident: ref6
  doi: 10.2352/ISSN.2470-1173.2017.19.AVM-023
– year: 2019
  ident: ref23
  article-title: Finite-time error bounds for linear stochastic approximation and TD learning
  publication-title: arXiv:1902.00923
– year: 2020
  ident: ref157
  article-title: Pymgrid: An open-source Python microgrid simulator for applied artificial intelligence research
  publication-title: arXiv:2011.08004
– ident: ref101
  doi: 10.1142/9789814360616_0007
– ident: ref112
  doi: 10.1109/ACCESS.2020.3041007
– year: 2021
  ident: ref180
  article-title: Improving robustness of reinforcement learning for power system control with adversarial training
  publication-title: arXiv:2110.08956
– year: 2021
  ident: ref86
  article-title: Scalable voltage control using structure-driven hierarchical deep reinforcement learning
  publication-title: arXiv:2102.00077
– ident: ref88
  doi: 10.1109/TSG.2020.2972208
– ident: ref90
  doi: 10.1109/TPWRS.2019.2948132
– ident: ref111
  doi: 10.1049/iet-gtd.2019.0554
– ident: ref58
  doi: 10.1109/TPWRS.2020.2999890
– start-page: 8092
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: ref166
  article-title: A lyapunov-based approach to safe reinforcement learning
– volume: 1
  start-page: 1
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref37
  article-title: Algorithms for inverse reinforcement learning
– ident: ref110
  doi: 10.1109/TPWRS.2020.2987292
– ident: ref108
  doi: 10.1109/EI250167.2020.9346692
– ident: ref178
  doi: 10.1109/PowerTech46648.2021.9494982
– ident: ref127
  doi: 10.1109/TSG.2020.2996274
– volume: 6
  start-page: 503
  year: 2005
  ident: ref31
  article-title: Tree-based batch mode reinforcement learning
  publication-title: J. Mach. Learn. Res.
– volume-title: CS231n: Convolutional Neural Networks for Visual Recognition
  year: 2021
  ident: ref43
– ident: ref64
  doi: 10.1109/TPWRS.2018.2881359
– ident: ref76
  doi: 10.1109/TPWRS.2019.2931685
– year: 2016
  ident: ref196
  article-title: Learning to reinforcement learn
  publication-title: arXiv:1611.05763
– year: 2020
  ident: ref187
  article-title: Multi-agent reinforcement learning in time-varying networked systems
  publication-title: arXiv:2006.06555
– start-page: 265
  volume-title: Proc. 12th Symp. Oper. Syst. Design Implement.
  ident: ref160
  article-title: TensorFlow: A system for large-scale machine learning
– ident: ref165
  doi: 10.1109/CDC.2018.8619572
– ident: ref183
  doi: 10.1287/opre.1050.0216
– ident: ref81
  doi: 10.1109/TSG.2021.3060027
– ident: ref133
  doi: 10.1109/TSG.2020.2971427
– ident: ref139
  doi: 10.1109/ACCESS.2019.2940005
– year: 2017
  ident: ref97
  article-title: Robust adversarial reinforcement learning
  publication-title: arXiv:1703.02702
– ident: ref131
  doi: 10.1109/TSG.2018.2834219
– ident: ref171
  doi: 10.1609/aaai.v33i01.33013387
– ident: ref135
  doi: 10.1109/ACCESS.2020.2974286
– ident: ref120
  doi: 10.1109/TNNLS.2018.2801880
– year: 2012
  ident: ref27
  article-title: Off-policy actor-critic
  publication-title: arXiv:1205.4839
– ident: ref136
  doi: 10.17775/CSEEJPES.2019.02890
– volume: 16
  start-page: 1437
  issue: 1
  year: 2015
  ident: ref168
  article-title: A comprehensive survey on safe reinforcement learning
  publication-title: J. Mach. Learn. Res.
– start-page: 5045
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref200
  article-title: Programmatically interpretable reinforcement learning
– start-page: 3185
  volume-title: Proc. Conf. Learn. Theory
  ident: ref25
  article-title: Finite-time analysis of asynchronous stochastic approximation and Q-learning
– year: 2018
  ident: ref170
  article-title: Reward constrained policy optimization
  publication-title: arXiv:1805.11074
– ident: ref182
  doi: 10.1287/moor.1040.0129
– year: 2017
  ident: ref38
  article-title: Learning robust rewards with adversarial inverse reinforcement learning
  publication-title: arXiv:1710.11248
– ident: ref118
  doi: 10.1109/TSG.2020.3035127
– volume-title: Dynamic Programming and Optimal Control
  year: 2012
  ident: ref12
– ident: ref65
  doi: 10.1109/ACCESS.2019.2894756
– start-page: 1889
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref53
  article-title: Trust region policy optimization
– ident: ref119
  doi: 10.1109/TSG.2019.2930299
– ident: ref144
  doi: 10.1109/TSG.2019.2933191
– ident: ref109
  doi: 10.1016/j.apenergy.2021.117634
– ident: ref152
  doi: 10.1109/LCSYS.2020.3003190
– ident: ref179
  doi: 10.1109/TNNLS.2019.2955857
– ident: ref106
  doi: 10.1109/TGCN.2021.3061789
– year: 2019
  ident: ref41
  article-title: Optimization for deep learning: Theory and algorithms
  publication-title: arXiv:1912.08957
– start-page: 1928
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref51
  article-title: Asynchronous methods for deep reinforcement learning
– ident: ref9
  doi: 10.1016/j.arcontrol.2019.09.008
– ident: ref126
  doi: 10.1109/TSG.2020.2986333
– ident: ref40
  doi: 10.1038/nature14539
– ident: ref148
  doi: 10.1109/TSG.2018.2790704
– start-page: 64
  volume-title: Proc. Conf. Learn. Theory
  ident: ref20
  article-title: Optimality and approximation with policy gradient methods in Markov decision processes
– year: 2017
  ident: ref54
  article-title: Proximal policy optimization algorithms
  publication-title: arXiv:1707.06347
– ident: ref11
  doi: 10.1016/j.arcontrol.2020.03.001
– ident: ref74
  doi: 10.1109/TPWRS.2019.2897948
– ident: ref18
  doi: 10.1561/2200000070
– ident: ref134
  doi: 10.1109/TSG.2020.2978061
– ident: ref146
  doi: 10.1109/TEC.2020.2990937
– ident: ref82
  doi: 10.1109/ACCESS.2021.3060620
– ident: ref49
  doi: 10.1609/aaai.v30i1.10295
– ident: ref61
  doi: 10.3390/en13051250
– year: 2021
  ident: ref98
  article-title: Bi-level off-policy reinforcement learning for Volt/VAR control involving continuous and discrete devices
  publication-title: arXiv:2104.05902
– ident: ref150
  doi: 10.1109/CDC40024.2019.9029268
– year: 2016
  ident: ref42
  publication-title: Deep Learning
– ident: ref47
  doi: 10.1038/nature14236
– ident: ref96
  doi: 10.1109/TSG.2020.3041620
– ident: ref36
  doi: 10.15607/RSS.2014.X.031
– ident: ref158
  doi: 10.21105/joss.02435
– ident: ref13
  doi: 10.1016/j.automatica.2013.09.043
– ident: ref62
  doi: 10.1109/TII.2020.3001095
– ident: ref104
  doi: 10.1109/TSG.2019.2909266
SSID ssj0000333629
Score 2.7091775
Snippet With large-scale integration of renewable generation and distributed energy resources, modern power systems are confronted with new operational challenges,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2935
SubjectTerms Communication networks
Decision making
Distributed generation
Energy management
Energy sources
Frequency regulation
Heuristic algorithms
Learning
Markov processes
Mathematical models
Power system dynamics
Power systems
Reinforcement learning
smart grid
Smart sensors
voltage control
Title Reinforcement Learning for Selective Key Applications in Power Systems: Recent Advances and Future Challenges
URI https://ieeexplore.ieee.org/document/9721402
https://www.proquest.com/docview/2679394776
Volume 13
WOSCitedRecordID wos000814692300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zeNCDv6Y4nZKDF8G6Nkl_xNsYTkEYw03YraSvqQjayboJ_ve-pF2ZKIK3EpJQ8iUv7-Ul30fIhRQc_WS0fhkPuSM85TuRzLQjtMnKBCxlWWTFJsLhMJpO5ahBruq3MFpre_lMX5tPm8tPZ7A0R2VdwzQjDHPkRhgG5Vut-jzF5RxtsbRJZGHS-T5fZSVd2Z2M7zAWZAxDVN-Y42-7kJVV-WGL7QYz2P3fr-2RncqRpL0S-X3S0PkB2V6jF2yRt0dteVHBHgHSikr1mWIRHVv9GzR19EF_0t5aGpu-5HRktNNoxWZ-Q9G3NB30yvsCBVV5SgeWjIT2V2IsxSF5GtxO-vdOJa_gAJPewpGJAAAGUeZqFwRTAXpvuN51oESYJn6apArHMuMgFFM8QNfMTQKueYY-gPY0PyLNfJbrY0KzCBRDx8bLQAmIpMIgBsc58RRIDhC2SXc13DFU3ONGAuM1tjGIK2MEKDYAxRVAbXJZt3gveTf-qNsygNT1KizapLNCNK4WZhGzAA2SFDh_Tn5vdUq2TN_ljdwOaS7mS31GNuFj8VLMz-2c-wKGANOn
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED5EBfXB3-J0ah58Eaxrk_RHfBviVNQhOsG3kl5TGWgVtwn-917SbiiK4FspSVvyNZfv7pLvAPaVFMSTyfoVIhaeDHToJaownjQ2KxPxnBeJKzYRd7vJw4O6mYLDyVkYY4zbfGaO7KXL5ecvOLKhspZVmpFWOXImlJL71WmtSUTFF4KssXJpZGkT-qEY5yV91erdnZE3yDk5qaE1yN_WIVdY5Yc1dktMZ-l_H7cMizWVZO0K-xWYMuUqLHwRGFyD51vjlFHRBQFZLab6yOgWu3MVcMjYsUvzwdpfEtmsX7IbWz2N1Xrmx4zYpX1Au9oxMGC6zFnHyZGwk3E5lsE63HdOeyfnXl1gwUOugqGnMomIHJPCNz5KriPibzTjTaRlnGdhnuWaxrIQKDXXIiJy5meRMKIgFmACIzZgunwpzSawIkHNidoEBWqJidLkxtA4Z4FGJRDjBrTGw51irT5ui2A8pc4L8VVKAKUWoLQGqAEHkx6vlfLGH23XLCCTdjUWDWiOEU3rqTlIeUQmSck4jrZ-77UHc-e966v06qJ7uQ3z9j3V_twmTA_fRmYHZvF92B-87br_7xOvEdbu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning+for+Selective+Key+Applications+in+Power+Systems%3A+Recent+Advances+and+Future+Challenges&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Chen%2C+Xin&rft.au=Qu%2C+Guannan&rft.au=Tang%2C+Yujie&rft.au=Low%2C+Steven&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=1949-3053&rft.volume=13&rft.issue=4&rft.spage=2935&rft.epage=2958&rft_id=info:doi/10.1109%2FTSG.2022.3154718&rft.externalDocID=9721402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon