The Storage Versus Repair-Bandwidth Trade-off for Clustered Storage Systems
We study a generalization of the setting of regenerating codes, motivated by applications to storage systems consisting of clusters of storage nodes. There are <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> clusters in total, with <inl...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 64; číslo 8; s. 5783 - 5805 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study a generalization of the setting of regenerating codes, motivated by applications to storage systems consisting of clusters of storage nodes. There are <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> clusters in total, with <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> nodes per cluster. A data file is coded and stored across the <inline-formula> <tex-math notation="LaTeX">mn </tex-math></inline-formula> nodes, with each node storing <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> symbols. For availability of data, we require that the file be retrievable by downloading the entire content from any subset of <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> clusters. Nodes represent entities that can fail. We distinguish between intra-cluster and inter-cluster bandwidth (BW) costs during node repair. Node-repair in a cluster is accomplished by downloading <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> symbols each from any set of <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula> other clusters, dubbed remote helper clusters, and also up to <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> symbols each from any set of <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula> surviving nodes, dubbed local helper nodes, in the host cluster. We first identify the optimal trade-off between storage-overhead and inter-cluster repair-bandwidth under functional repair, and also present optimal exact-repair code constructions for a class of parameters. The new trade-off is strictly better than what is achievable via space-sharing existing coding solutions, whenever <inline-formula> <tex-math notation="LaTeX">\ell > 0 </tex-math></inline-formula>. We then obtain sharp lower bounds on the necessary intra-cluster repair BW to achieve optimal trade-off. Under functional repair, random linear network codes (RLNCs) simultaneously optimize usage of both inter- and intra-cluster repair BW; simulation results based on RLNCs suggest optimality of the bounds on intra-cluster repair-bandwidth. Our bounds reveal the interesting fact that, while it is beneficial to increase the number of local helper nodes <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula> in order to improve the storage-vs-inter-cluster-repair-BW trade-off, increasing <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula> not only increases intra-cluster BW in the host-cluster, but also increases the intra-cluster BW in the remote helper clusters. We also analyze resilience of the clustered storage system against passive eavesdropping by providing file-size bounds and optimal code constructions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2018.2806342 |