Enhancing Dynamic Symbolic Execution by Automatically Learning Search Heuristics
We present a technique to automatically generate search heuristics for dynamic symbolic execution. A key challenge in dynamic symbolic execution is how to effectively explore the program's execution paths to achieve high code coverage in a limited time budget. Dynamic symbolic execution employs...
Saved in:
| Published in: | IEEE transactions on software engineering Vol. 48; no. 9; pp. 3640 - 3663 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.09.2022
IEEE Computer Society |
| Subjects: | |
| ISSN: | 0098-5589, 1939-3520 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present a technique to automatically generate search heuristics for dynamic symbolic execution. A key challenge in dynamic symbolic execution is how to effectively explore the program's execution paths to achieve high code coverage in a limited time budget. Dynamic symbolic execution employs a search heuristic to address this challenge, which favors exploring particular types of paths that are most likely to maximize the final coverage. However, manually designing a good search heuristic is nontrivial and typically ends up with suboptimal and unstable outcomes. The goal of this paper is to overcome this shortcoming of dynamic symbolic execution by automatically learning search heuristics. We define a class of search heuristics, namely a parametric search heuristic, and present an algorithm that efficiently finds an optimal heuristic for each subject program. Experimental results with industrial-strength symbolic execution tools (e.g., KLEE) show that our technique can successfully generate search heuristics that significantly outperform existing manually-crafted heuristics in terms of branch coverage and bug-finding. |
|---|---|
| AbstractList | We present a technique to automatically generate search heuristics for dynamic symbolic execution. A key challenge in dynamic symbolic execution is how to effectively explore the program's execution paths to achieve high code coverage in a limited time budget. Dynamic symbolic execution employs a search heuristic to address this challenge, which favors exploring particular types of paths that are most likely to maximize the final coverage. However, manually designing a good search heuristic is nontrivial and typically ends up with suboptimal and unstable outcomes. The goal of this paper is to overcome this shortcoming of dynamic symbolic execution by automatically learning search heuristics. We define a class of search heuristics, namely a parametric search heuristic, and present an algorithm that efficiently finds an optimal heuristic for each subject program. Experimental results with industrial-strength symbolic execution tools (e.g., KLEE) show that our technique can successfully generate search heuristics that significantly outperform existing manually-crafted heuristics in terms of branch coverage and bug-finding. |
| Author | Lee, Junhee Cha, Sooyoung Bak, Jiseong Kim, Jingyoung Oh, Hakjoo Hong, Seongjoon |
| Author_xml | – sequence: 1 givenname: Sooyoung orcidid: 0000-0002-4697-8536 surname: Cha fullname: Cha, Sooyoung email: sooyoung.cha@skku.edu organization: Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 2 givenname: Seongjoon orcidid: 0000-0002-0530-0235 surname: Hong fullname: Hong, Seongjoon email: seongjoon@korea.ac.kr organization: Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 3 givenname: Jiseong orcidid: 0000-0002-3587-5005 surname: Bak fullname: Bak, Jiseong email: js_bak@korea.ac.kr organization: Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 4 givenname: Jingyoung orcidid: 0000-0003-2072-8878 surname: Kim fullname: Kim, Jingyoung email: jg_kim@korea.ac.kr organization: Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 5 givenname: Junhee surname: Lee fullname: Lee, Junhee email: junhee_lee@korea.ac.kr organization: Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 6 givenname: Hakjoo orcidid: 0000-0002-1900-7654 surname: Oh fullname: Oh, Hakjoo email: hakjoo_oh@korea.ac.kr organization: Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea |
| BookMark | eNp9kMFLwzAUh4MouE3vgpeC586XpFmS45jVCQOFzXNI09RltOlMW7D_vS0bHjx4ej94v-89-Kbo0tfeInSHYY4xyMfdNp0TIHhOMWDB4QJNsKQypozAJZoASBEzJuQ1mjbNAQAY52yC3lO_1944_xk99V5XzkTbvsrqcgjptzVd62ofZX207Nq60q0zuiz7aGN18CO0HYLZR2vbBdcM2-YGXRW6bOztec7Qx3O6W63jzdvL62q5iQ2RuI1FznOOWSIpy4TBXBPNreTYWsKsMYQYCTmlhZUZ5kWii0UCRDAicsYWRWLpDD2c7h5D_dXZplWHugt-eKkIx4lkDCQdWnBqmVA3TbCFOgZX6dArDGr0pgZvavSmzt4GZPEHMa7Vo4Y2aFf-B96fQGet_f0jGXAQlP4ABDx8Jw |
| CODEN | IESEDJ |
| CitedBy_id | crossref_primary_10_1109_TASE_2024_3520311 crossref_primary_10_1007_s10207_023_00691_1 crossref_primary_10_1142_S0218194025300027 crossref_primary_10_1007_s40747_024_01706_7 crossref_primary_10_1016_j_ins_2023_119915 |
| Cites_doi | 10.1109/ICSE.2012.6227146 10.1145/2110356.2110358 10.1145/3167132.3167289 10.1145/390016.808445 10.1145/2509136.2509552 10.1145/2408776.2408795 10.1145/2379776.2379787 10.1145/3236024.3236049 10.1109/ICST.2015.7102601 10.1145/2491411.2491425 10.14722/ndss.2016.23368 10.1109/ICSE-Companion.2019.00051 10.1145/1065010.1065036 10.1109/SP.2017.40 10.1145/3238147.3238227 10.1145/3133956.3134050 10.1007/11537328_2 10.1145/3092703.3092709 10.1145/2509136.2509553 10.1145/2786805.2786830 10.1145/1083246.1083256 10.1109/ICSE.2015.80 10.1145/2025113.2025180 10.1145/3180155.3180177 10.1109/DSN.2009.5270315 10.1145/2884781.2884843 10.1145/3180155.3180166 10.1109/ICSE.2009.5070545 10.1145/3338906.3338964 10.1145/3092703.3092728 10.1145/2635868.2635889 10.1007/978-3-662-49122-5_16 10.1109/ICST.2018.00020 10.1109/ICSE.2012.6227105 10.1109/SP.2017.23 10.1145/390016.808444 10.1109/ICSE.2013.6606559 10.1145/3180155.3180251 10.14722/ndss.2015.23294 10.1109/ASE.2008.40 10.1145/360248.360252 10.1145/2970276.2970364 10.1145/3238147.3238172 10.1109/ICSE.2007.41 10.1145/2635868.2635872 10.1007/3-540-45322-9_5 10.1145/2254064.2254088 10.1145/1180405.1180445 10.1145/1706299.1706307 10.1145/3182657 10.1109/TSE.2017.2659751 10.1109/ASE.2008.69 10.1145/2568225.2568293 10.1145/1081706.1081750 10.1145/1966445.1966463 10.1109/ICSTW.2011.100 10.1109/ICSE.2017.26 10.1109/ASE.2017.8115618 10.1145/2393596.2393636 10.1145/3238147.3238179 10.1007/978-3-540-73368-3_52 10.1109/TSE.1977.231144 10.1007/978-3-540-78800-3_27 10.1145/1190216.1190226 |
| ContentType | Journal Article |
| Copyright | Copyright IEEE Computer Society 2022 |
| Copyright_xml | – notice: Copyright IEEE Computer Society 2022 |
| DBID | 97E RIA RIE AAYXX CITATION JQ2 K9. |
| DOI | 10.1109/TSE.2021.3101870 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1939-3520 |
| EndPage | 3663 |
| ExternalDocumentID | 10_1109_TSE_2021_3101870 9507083 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Institute for Information & communications Technology Planning & Evaluation – fundername: Samsung Research Funding & Incubation Center of Samsung Electronics grantid: SRFC-IT1701-51 – fundername: Institute of Information & Communications Technology Planning & Evaluation – fundername: National Research Foundation of Korea grantid: NRF-2021R1C1C2006410 funderid: 10.13039/501100003725 – fundername: ICT Creative Consilience program grantid: IITP-2021-2020-0-01819 – fundername: Ministry of Science and ICT, South Korea; MSIT grantid: 2020-0-01337 funderid: 10.13039/501100014188 |
| GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 8R4 8R5 97E AAJGR AARMG AASAJ AAWTH ABAZT ABPPZ ABQJQ ABVLG ACGFO ACGOD ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 EBS EDO EJD HZ~ I-F IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P Q2X RIA RIE RNS RXW S10 TAE TN5 TWZ UHB UPT WH7 YZZ AAYXX CITATION JQ2 K9. |
| ID | FETCH-LOGICAL-c291t-8d7d7154935b8c17a2a7e971ee25ecc22c90d33fe9b17f4af64028528d556f4e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000854591500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-5589 |
| IngestDate | Fri Oct 03 03:51:58 EDT 2025 Sat Nov 29 03:10:26 EST 2025 Tue Nov 18 21:44:03 EST 2025 Wed Aug 27 02:29:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-8d7d7154935b8c17a2a7e971ee25ecc22c90d33fe9b17f4af64028528d556f4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4697-8536 0000-0002-1900-7654 0000-0002-0530-0235 0000-0003-2072-8878 0000-0002-3587-5005 |
| PQID | 2714955093 |
| PQPubID | 21418 |
| PageCount | 24 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSE_2021_3101870 proquest_journals_2714955093 crossref_primary_10_1109_TSE_2021_3101870 ieee_primary_9507083 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on software engineering |
| PublicationTitleAbbrev | TSE |
| PublicationYear | 2022 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref13 ref57 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 (ref56) 2017 kim (ref8) 2017 godefroid (ref21) 2008 ref51 ref50 dutertre (ref48) 2006 (ref32) 2008 ref45 ref42 ref41 ref44 ref43 ref49 ref7 (ref46) 2005 ref9 ref4 ref3 cadar (ref22) 2008 ref6 ref5 ref40 ref35 ref34 ref78 ref37 ref36 bugrara (ref29) 2013 ref31 ref75 zhang (ref64) 2018 ref74 ref33 ref77 ref76 ref2 ref1 ref39 ref38 ref71 ref70 sun (ref59) 2018 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 corteggiani (ref12) 2018 ref63 ref66 ref65 ref28 ref27 (ref47) 2018 ref60 wong (ref30) 2015 ref62 ref61 |
| References_xml | – ident: ref35 doi: 10.1109/ICSE.2012.6227146 – ident: ref34 doi: 10.1145/2110356.2110358 – ident: ref55 doi: 10.1145/3167132.3167289 – ident: ref17 doi: 10.1145/390016.808445 – ident: ref74 doi: 10.1145/2509136.2509552 – ident: ref19 doi: 10.1145/2408776.2408795 – start-page: 620 year: 2015 ident: ref30 article-title: DASE: document-assisted symbolic execution for improving automated software testing publication-title: Proceedings of the International Conference on Software Engineering ICSE'94 – year: 2006 ident: ref48 article-title: The yices SMT solver – ident: ref78 doi: 10.1145/2379776.2379787 – ident: ref45 doi: 10.1145/3236024.3236049 – ident: ref36 doi: 10.1109/ICST.2015.7102601 – ident: ref60 doi: 10.1145/2491411.2491425 – ident: ref9 doi: 10.14722/ndss.2016.23368 – ident: ref14 doi: 10.1109/ICSE-Companion.2019.00051 – ident: ref2 doi: 10.1145/1065010.1065036 – ident: ref10 doi: 10.1109/SP.2017.40 – ident: ref43 doi: 10.1145/3238147.3238227 – year: 2017 ident: ref56 – start-page: 14 year: 2018 ident: ref64 article-title: Boost symbolic execution using dynamic state merging and forking publication-title: Proc Int Workshop Quantitative Approaches Softw Qual – ident: ref11 doi: 10.1145/3133956.3134050 – ident: ref3 doi: 10.1007/11537328_2 – start-page: 689 year: 2017 ident: ref8 article-title: CAB-Fuzz: Practical concolic testing techniques for COTS operating systems publication-title: Proc USENIX Annu Tech Conf – ident: ref75 doi: 10.1145/3092703.3092709 – ident: ref25 doi: 10.1145/2509136.2509553 – ident: ref65 doi: 10.1145/2786805.2786830 – ident: ref76 doi: 10.1145/1083246.1083256 – ident: ref7 doi: 10.1109/ICSE.2015.80 – ident: ref42 doi: 10.1145/2025113.2025180 – ident: ref51 doi: 10.1145/3180155.3180177 – ident: ref50 doi: 10.1109/DSN.2009.5270315 – ident: ref6 doi: 10.1145/2884781.2884843 – ident: ref26 doi: 10.1145/3180155.3180166 – ident: ref52 doi: 10.1109/ICSE.2009.5070545 – ident: ref44 doi: 10.1145/3338906.3338964 – ident: ref70 doi: 10.1145/3092703.3092728 – ident: ref66 doi: 10.1145/2635868.2635889 – ident: ref40 doi: 10.1007/978-3-662-49122-5_16 – ident: ref73 doi: 10.1109/ICST.2018.00020 – ident: ref27 doi: 10.1109/ICSE.2012.6227105 – ident: ref72 doi: 10.1109/SP.2017.23 – ident: ref15 doi: 10.1145/390016.808444 – ident: ref33 doi: 10.1109/ICSE.2013.6606559 – start-page: 151 year: 2008 ident: ref21 article-title: Automated whitebox fuzz testing publication-title: Proc Symp Network and Distributed System Security – ident: ref39 doi: 10.1145/3180155.3180251 – ident: ref57 doi: 10.14722/ndss.2015.23294 – ident: ref54 doi: 10.1109/ASE.2008.40 – ident: ref16 doi: 10.1145/360248.360252 – ident: ref69 doi: 10.1145/2970276.2970364 – ident: ref13 doi: 10.1145/3238147.3238172 – ident: ref53 doi: 10.1109/ICSE.2007.41 – ident: ref23 doi: 10.1145/2635868.2635872 – start-page: 199 year: 2013 ident: ref29 article-title: Redundant state detection for dynamic symbolic execution publication-title: Proc USENIX Conf Annu Tech Conf – ident: ref67 doi: 10.1007/3-540-45322-9_5 – ident: ref38 doi: 10.1145/2254064.2254088 – year: 2005 ident: ref46 – year: 2018 ident: ref59 – ident: ref4 doi: 10.1145/1180405.1180445 – ident: ref62 doi: 10.1145/1706299.1706307 – ident: ref58 doi: 10.1145/3182657 – ident: ref37 doi: 10.1109/TSE.2017.2659751 – ident: ref20 doi: 10.1109/ASE.2008.69 – ident: ref5 doi: 10.1145/2568225.2568293 – ident: ref63 doi: 10.1145/3238147.3238227 – ident: ref1 doi: 10.1145/1081706.1081750 – ident: ref28 doi: 10.1145/1966445.1966463 – ident: ref77 doi: 10.1109/ICSTW.2011.100 – year: 2008 ident: ref32 – ident: ref68 doi: 10.1109/ICSE.2017.26 – ident: ref71 doi: 10.1109/ASE.2017.8115618 – ident: ref24 doi: 10.1145/2393596.2393636 – ident: ref31 doi: 10.1145/3238147.3238179 – ident: ref49 doi: 10.1007/978-3-540-73368-3_52 – ident: ref18 doi: 10.1109/TSE.1977.231144 – ident: ref41 doi: 10.1007/978-3-540-78800-3_27 – start-page: 309 year: 2018 ident: ref12 article-title: Inception: System-wide security testing of real-world embedded systems software publication-title: Proc Usenix Secur Symp – ident: ref61 doi: 10.1145/1190216.1190226 – year: 2018 ident: ref47 – start-page: 209 year: 2008 ident: ref22 article-title: KLEE: Unassisted and automatic generation of high-coverage tests for complex systems programs publication-title: Proc 8th USENIX Conf Operating Syst Des Implementation |
| SSID | ssj0005775 ssib053395008 |
| Score | 2.4752433 |
| Snippet | We present a technique to automatically generate search heuristics for dynamic symbolic execution. A key challenge in dynamic symbolic execution is how to... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3640 |
| SubjectTerms | Algorithms concolic testing Dynamic symbolic execution execution-generated testing Heuristic Heuristic algorithms Learning Open source software search heuristics Search problems Searching Software algorithms Software testing Testing |
| Title | Enhancing Dynamic Symbolic Execution by Automatically Learning Search Heuristics |
| URI | https://ieeexplore.ieee.org/document/9507083 https://www.proquest.com/docview/2714955093 |
| Volume | 48 |
| WOSCitedRecordID | wos000854591500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1939-3520 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005775 issn: 0098-5589 databaseCode: RIE dateStart: 19750101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5s4sGLv8XplBy8CNa1adMkx6GTHUSEqXgrTfqqwuxEN3H_vUmaTkQRvPWQQHlf0nyvee_7AI5UYltlFQvCkqZBIhIMlGHFQSgF6jJVhXJ9a3eX_OpK3N_L6xacLHphENEVn-GpfXR3-cVEz-yvsp405MVQhja0Oed1r9ZXOQfnrNHHZEzI5koylL2b0cAkgjQy-am1oAu_HUHOU-XHh9idLhdr_3uvdVj1LJL0a9g3oIXVJqw1Dg3Eb9gtuB5Uj1ZQo3og57X1PBnNn5XVAiaDD9Ru1RE1J_3ZdOLEW_PxeE686OoDqYuRyRBnXtB5G24vBjdnw8B7KASaymgaiIIX3MqwxUwJHfGc5hwljxApM-hRqmVYxHGJUkW8TPIyNQmlYFQUjKVlgvEOLFWTCneBsFIjoypHmYcJL3KVUhSxjqM8SoskjDvQa8KaaS8wbn0uxplLNEKZGSAyC0TmgejA8WLGSy2u8cfYLRv4xTgf8w50G-Qyv_veMspt3meoULz3-6x9WKG2jcHVinVhafo6wwNY1u_Tp7fXQ7ewPgF3Qcra |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5igDQuwMYQ5dd82GXSsiaOHdtHtBUVrauQKIhbFDsvgFRSBC2i_z2243RCTEjccrCl6H12_L34ve8D-KaZa5XVPIormkVMMoy0ZcVRrCSaKtOl9n1rFwMxHMrLS3W6BD8WvTCI6IvP8Kd79Hf55cTM3K-yrrLkxVKGD7DCGaNJ0631r6BDCN4qZHIuVXspGavu6KxnU0Ga2AzVmdDFLw4h76ry6lPsz5fjjfe92SasBx5JjhrgP8ES1p9ho_VoIGHLbsFpr752khr1FfndmM-Ts_mtdmrApPeExq87oufkaDadePnWYjyekyC7ekWacmTSx1mQdP4C58e90a9-FFwUIkNVMo1kKUrhhNhSrqVJREELgUokiJRb_Cg1Ki7TtEKlE1GxospsSik5lSXnWcUw3YblelLjDhBeGeRUF6iKmImy0BlFmZo0KZKsZHHagW4b1twEiXHndDHOfaoRq9wCkTsg8gBEB74vZtw18hpvjN1ygV-MCzHvwH6LXB7230NOhcv8LBlKd_8_6yt87I_-DvLByfDPHqxR19TgK8f2YXl6P8MDWDWP05uH-0O_yJ4BLifOIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Dynamic+Symbolic+Execution+by+Automatically+Learning+Search+Heuristics&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Cha%2C+Sooyoung&rft.au=Hong%2C+Seongjoon&rft.au=Bak%2C+Jiseong&rft.au=Kim%2C+Jingyoung&rft.date=2022-09-01&rft.pub=IEEE+Computer+Society&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=48&rft.issue=9&rft.spage=3640&rft_id=info:doi/10.1109%2FTSE.2021.3101870&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon |