Separable Codes for the Symmetric Multiple-Access Channel

A binary matrix is called an <inline-formula> <tex-math notation="LaTeX">{s} </tex-math></inline-formula>- separable code for the disjunctive multiple-access channel ( disj-MAC ) if Boolean sums of sets of <inline-formula> <tex-math notation="LaTeX&quo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 65; číslo 6; s. 3738 - 3750
Hlavní autoři: D'yachkov, Arkadii, Polyanskii, Nikita, Shchukin, Vladislav, Vorobyev, Ilya
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A binary matrix is called an <inline-formula> <tex-math notation="LaTeX">{s} </tex-math></inline-formula>- separable code for the disjunctive multiple-access channel ( disj-MAC ) if Boolean sums of sets of <inline-formula> <tex-math notation="LaTeX">{s} </tex-math></inline-formula> columns are all distinct. The well-known issue of the combinatorial coding theory is to obtain upper and lower bounds on the rate of <inline-formula> <tex-math notation="LaTeX">{s} </tex-math></inline-formula>-separable codes for the <inline-formula> <tex-math notation="LaTeX">{disj} </tex-math></inline-formula>-MAC. In our paper, we generalize the problem and discuss upper and lower bounds on the rate of <inline-formula> <tex-math notation="LaTeX">{q} </tex-math></inline-formula>-ary <inline-formula> <tex-math notation="LaTeX">{s} </tex-math></inline-formula>-separable codes for the models of noiseless symmetric MAC, i.e., at each time instant the output signal of MAC is a symmetric function of its <inline-formula> <tex-math notation="LaTeX">{s} </tex-math></inline-formula> input signals.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2019.2893234