Robust Aggregation for Federated Learning

We present a novel approach to federated learning that endows its aggregation process with greater robustness to potential poisoning of local data or model parameters of participating devices. The proposed approach, Robust Federated Aggregation (RFA), relies on the aggregation of updates using the g...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 70; pp. 1142 - 1154
Main Authors: Pillutla, Krishna, Kakade, Sham M., Harchaoui, Zaid
Format: Journal Article
Language:English
Published: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a novel approach to federated learning that endows its aggregation process with greater robustness to potential poisoning of local data or model parameters of participating devices. The proposed approach, Robust Federated Aggregation (RFA), relies on the aggregation of updates using the geometric median, which can be computed efficiently using a Weiszfeld-type algorithm. RFA is agnostic to the level of corruption and aggregates model updates without revealing each device's individual contribution. We establish the convergence of the robust federated learning algorithm for the stochastic learning of additive models with least squares. We also offer two variants of RFA: a faster one with one-step robust aggregation, and another one with on-device personalization. We present experimental results with additive models and deep networks for three tasks in computer vision and natural language processing. The experiments show that RFA is competitive with the classical aggregation when the level of corruption is low, while demonstrating greater robustness under high corruption.
AbstractList We present a novel approach to federated learning that endows its aggregation process with greater robustness to potential poisoning of local data or model parameters of participating devices. The proposed approach, Robust Federated Aggregation (RFA), relies on the aggregation of updates using the geometric median, which can be computed efficiently using a Weiszfeld-type algorithm. RFA is agnostic to the level of corruption and aggregates model updates without revealing each device’s individual contribution. We establish the convergence of the robust federated learning algorithm for the stochastic learning of additive models with least squares. We also offer two variants of RFA: a faster one with one-step robust aggregation, and another one with on-device personalization. We present experimental results with additive models and deep networks for three tasks in computer vision and natural language processing. The experiments show that RFA is competitive with the classical aggregation when the level of corruption is low, while demonstrating greater robustness under high corruption.
Author Pillutla, Krishna
Harchaoui, Zaid
Kakade, Sham M.
Author_xml – sequence: 1
  givenname: Krishna
  orcidid: 0000-0002-1262-8466
  surname: Pillutla
  fullname: Pillutla, Krishna
  email: pillutla@cs.washington.edu
  organization: University of Washington, Seattle, WA, USA
– sequence: 2
  givenname: Sham M.
  surname: Kakade
  fullname: Kakade, Sham M.
  email: sham@seas.harvard.edu
  organization: Harvard University, Cambridge, MA, USA
– sequence: 3
  givenname: Zaid
  surname: Harchaoui
  fullname: Harchaoui, Zaid
  email: zaid@uw.edu
  organization: University of Washington, Seattle, WA, USA
BookMark eNp9kL9LAzEUx4NUsK3ugsuBk8PVvCR3ScZSrAoFRSu4hTSXHFfqpSbp4H9vaouDg9N7w_fzfnxGaND73iJ0CXgCgOXt8vV5QjAhEwoVBVqdoCFIBiVmvB7kHle0rAR_P0OjGNcYA2OyHqKbF7_axVRM2zbYVqfO94XzoZjbxgadbFMsrA5917fn6NTpTbQXxzpGb_O75eyhXDzdP86mi9IQCakUGDfAhTaidoRZa6nOuzl1TjjCzQo0MVAJJiR3EqxeCSMcI42TzjUcCB2j68PcbfCfOxuTWvtd6PNKRWoqJQVMIKfqQ8oEH2OwTpku_Zyfgu42CrDaa1FZi9prUUctGcR_wG3oPnT4-g-5OiBdfuc3LjkBAEG_AeXzbgM
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_conengprac_2025_106366
crossref_primary_10_1016_j_knosys_2023_110813
crossref_primary_10_1109_JIOT_2023_3272334
crossref_primary_10_1145_3616537
crossref_primary_10_1109_TIFS_2025_3576594
crossref_primary_10_1016_j_jisa_2025_104210
crossref_primary_10_1109_TGRS_2023_3320044
crossref_primary_10_1109_JIOT_2024_3510695
crossref_primary_10_1016_j_cose_2024_103740
crossref_primary_10_1007_s44443_025_00115_1
crossref_primary_10_1109_TSP_2023_3340028
crossref_primary_10_3390_electronics12224633
crossref_primary_10_1109_COMST_2024_3434510
crossref_primary_10_1145_3760788
crossref_primary_10_1145_3651307
crossref_primary_10_1109_JIOT_2023_3325634
crossref_primary_10_1007_s42979_025_03934_1
crossref_primary_10_1109_TIFS_2025_3539964
crossref_primary_10_1109_TNNLS_2022_3213187
crossref_primary_10_1016_j_automatica_2023_111264
crossref_primary_10_1109_TETC_2024_3474484
crossref_primary_10_1109_ACCESS_2025_3602217
crossref_primary_10_1016_j_future_2024_04_048
crossref_primary_10_1109_JSEN_2023_3287580
crossref_primary_10_1109_TIFS_2025_3579290
crossref_primary_10_1016_j_ifacol_2025_07_065
crossref_primary_10_1016_j_comnet_2025_111187
crossref_primary_10_1016_j_comnet_2025_111626
crossref_primary_10_32604_cmes_2024_048932
crossref_primary_10_3390_math12060901
crossref_primary_10_1109_ACCESS_2024_3431031
crossref_primary_10_1109_TNSM_2024_3514212
crossref_primary_10_32604_cmc_2024_058656
crossref_primary_10_1016_j_jpdc_2024_104918
crossref_primary_10_1016_j_ins_2023_119743
crossref_primary_10_1109_ACCESS_2025_3586416
crossref_primary_10_1016_j_jobe_2025_113223
crossref_primary_10_1016_j_comnet_2024_110383
crossref_primary_10_1109_ACCESS_2023_3284976
crossref_primary_10_1145_3706112
crossref_primary_10_1109_JIOT_2025_3528013
crossref_primary_10_1109_TFUZZ_2024_3412983
crossref_primary_10_1109_TIFS_2024_3378006
crossref_primary_10_1016_j_knosys_2024_112029
crossref_primary_10_1016_j_knosys_2024_111851
crossref_primary_10_3390_math11010214
crossref_primary_10_1007_s40747_023_00978_9
crossref_primary_10_1109_JIOT_2024_3421602
crossref_primary_10_1002_mp_16964
crossref_primary_10_1016_j_comcom_2025_108272
crossref_primary_10_1109_JIOT_2024_3452717
crossref_primary_10_1109_TNSM_2023_3336067
crossref_primary_10_1016_j_neucom_2023_127225
crossref_primary_10_1109_TSUSC_2024_3379440
crossref_primary_10_1016_j_ins_2024_120475
crossref_primary_10_1109_TIFS_2025_3576008
crossref_primary_10_3390_electronics13081540
crossref_primary_10_1109_ACCESS_2025_3567487
crossref_primary_10_1177_14727978251366544
crossref_primary_10_1007_s00521_025_11475_0
crossref_primary_10_1007_s10586_024_04894_6
crossref_primary_10_1109_TC_2023_3257510
crossref_primary_10_1109_TCBB_2022_3185395
crossref_primary_10_1002_int_22993
crossref_primary_10_1007_s40747_024_01664_0
crossref_primary_10_1109_TIFS_2025_3536777
crossref_primary_10_1016_j_patcog_2024_110976
crossref_primary_10_1016_j_compbiomed_2024_108905
crossref_primary_10_1109_ACCESS_2025_3605870
crossref_primary_10_1109_TVT_2024_3524834
crossref_primary_10_1109_ACCESS_2024_3413069
crossref_primary_10_1109_ACCESS_2024_3493946
crossref_primary_10_1007_s11227_025_07619_7
crossref_primary_10_1016_j_ins_2022_10_113
crossref_primary_10_1016_j_neucom_2025_131580
crossref_primary_10_1109_TNNLS_2025_3563537
crossref_primary_10_1007_s13042_025_02750_6
crossref_primary_10_1016_j_future_2024_04_009
crossref_primary_10_1016_j_compbiomed_2025_111060
crossref_primary_10_1007_s42979_024_03462_4
crossref_primary_10_4018_JCIT_333858
crossref_primary_10_1016_j_jnca_2023_103714
crossref_primary_10_1109_TPAMI_2025_3581555
crossref_primary_10_1109_TC_2023_3293731
crossref_primary_10_1109_JSAC_2024_3431526
crossref_primary_10_1109_JIOT_2024_3523293
crossref_primary_10_3390_fi16100374
crossref_primary_10_3390_electronics12051190
crossref_primary_10_1016_j_eswa_2025_127636
crossref_primary_10_3390_s23177358
crossref_primary_10_1016_j_ins_2023_119784
crossref_primary_10_3390_jcp3020010
crossref_primary_10_1109_TDSC_2025_3550330
crossref_primary_10_1016_j_inffus_2024_102251
crossref_primary_10_1109_TMC_2024_3407792
crossref_primary_10_1007_s11227_025_07449_7
crossref_primary_10_1109_TIFS_2025_3587185
crossref_primary_10_1016_j_engappai_2024_109464
crossref_primary_10_1109_TIFS_2023_3345171
crossref_primary_10_1016_j_engappai_2025_110724
crossref_primary_10_1109_ACCESS_2025_3580198
crossref_primary_10_1109_TSMC_2025_3551264
crossref_primary_10_1016_j_future_2024_05_009
crossref_primary_10_1016_j_jnca_2025_104280
crossref_primary_10_1109_TMC_2024_3427709
crossref_primary_10_1109_JIOT_2024_3462674
crossref_primary_10_1109_ACCESS_2025_3593953
crossref_primary_10_1007_s11704_024_3767_z
crossref_primary_10_1177_14727978241299490
crossref_primary_10_1002_cpe_8084
crossref_primary_10_1016_j_comnet_2025_111442
crossref_primary_10_1007_s42952_023_00249_w
crossref_primary_10_1016_j_sysarc_2024_103258
crossref_primary_10_1016_j_adhoc_2025_103934
crossref_primary_10_3390_s22082991
crossref_primary_10_1016_j_procs_2023_09_021
crossref_primary_10_1109_TIFS_2024_3420135
crossref_primary_10_1109_TNET_2023_3324697
crossref_primary_10_1016_j_comnet_2024_110730
crossref_primary_10_1109_TNNLS_2022_3216981
crossref_primary_10_3390_electronics12040842
crossref_primary_10_1016_j_knosys_2024_111660
crossref_primary_10_1109_TIFS_2025_3577498
crossref_primary_10_1016_j_aej_2025_05_008
crossref_primary_10_1109_TII_2024_3435449
crossref_primary_10_1145_3678182
crossref_primary_10_1145_3725814
crossref_primary_10_3390_electronics12102287
crossref_primary_10_3390_math12182932
crossref_primary_10_1016_j_inffus_2025_103569
crossref_primary_10_3390_app13053135
crossref_primary_10_1016_j_ins_2023_119808
crossref_primary_10_1109_TIT_2022_3192874
crossref_primary_10_1109_TBDATA_2023_3237397
crossref_primary_10_1109_JIOT_2023_3348117
crossref_primary_10_1016_j_inffus_2022_09_011
crossref_primary_10_1109_ACCESS_2024_3363884
crossref_primary_10_1016_j_asoc_2024_111764
crossref_primary_10_1016_j_future_2024_01_007
crossref_primary_10_1002_cpe_70219
crossref_primary_10_1016_j_ins_2024_120760
crossref_primary_10_1109_ACCESS_2022_3226245
crossref_primary_10_1109_TCE_2024_3386932
crossref_primary_10_1145_3669902
crossref_primary_10_1016_j_jnca_2025_104181
crossref_primary_10_1109_TDSC_2022_3204535
crossref_primary_10_1007_s10115_025_02339_z
crossref_primary_10_1109_TSIPN_2024_3379844
crossref_primary_10_3390_e27060553
crossref_primary_10_1016_j_phycom_2025_102634
crossref_primary_10_1186_s40537_025_01165_y
crossref_primary_10_1109_OJCOMS_2025_3558672
crossref_primary_10_1109_IOTM_001_2100192
crossref_primary_10_1049_ipr2_70201
crossref_primary_10_3390_electronics12194179
crossref_primary_10_1109_TSP_2025_3547787
crossref_primary_10_1109_TPAMI_2024_3418862
crossref_primary_10_1109_JIOT_2025_3584818
crossref_primary_10_1016_j_jmsy_2024_09_005
crossref_primary_10_1098_rsta_2024_0235
crossref_primary_10_1109_TWC_2023_3326438
crossref_primary_10_1016_j_energy_2023_129847
crossref_primary_10_1063_5_0293257
crossref_primary_10_1016_j_eswa_2025_128408
crossref_primary_10_1109_TCNS_2025_3527255
crossref_primary_10_1371_journal_pone_0327733
crossref_primary_10_1109_TPAMI_2022_3162397
crossref_primary_10_3390_electronics13183716
crossref_primary_10_3390_technologies13090409
crossref_primary_10_1145_3722562
crossref_primary_10_1109_OJSP_2025_3578273
crossref_primary_10_1016_j_iot_2023_100793
crossref_primary_10_1016_j_comnet_2025_111234
crossref_primary_10_1016_j_ins_2024_121274
crossref_primary_10_1016_j_engappai_2023_107166
crossref_primary_10_1016_j_eswa_2023_122861
crossref_primary_10_3390_ai6090218
crossref_primary_10_1016_j_comnet_2025_111479
crossref_primary_10_1109_LSP_2024_3434467
crossref_primary_10_1109_TIFS_2024_3402113
crossref_primary_10_1109_TMC_2025_3571058
crossref_primary_10_1016_j_future_2025_107831
crossref_primary_10_1109_ACCESS_2023_3269980
crossref_primary_10_1109_JIOT_2023_3325443
crossref_primary_10_1016_j_enbuild_2023_113449
crossref_primary_10_3390_electronics13111999
crossref_primary_10_1016_j_future_2023_03_042
crossref_primary_10_1016_j_jpdc_2024_104994
crossref_primary_10_1016_j_neucom_2023_126897
crossref_primary_10_1186_s42400_024_00341_6
crossref_primary_10_3390_drones9080528
crossref_primary_10_3390_electronics14081651
crossref_primary_10_1016_j_inffus_2025_103248
crossref_primary_10_1109_TDSC_2024_3372634
crossref_primary_10_1109_TKDE_2024_3420778
crossref_primary_10_1109_JETCAS_2024_3477348
crossref_primary_10_1109_TCE_2024_3471921
crossref_primary_10_1109_ACCESS_2024_3508030
crossref_primary_10_1016_j_knosys_2024_112484
crossref_primary_10_1109_TSP_2024_3514802
crossref_primary_10_3390_electronics12183938
crossref_primary_10_1109_TIFS_2025_3533899
crossref_primary_10_1109_ACCESS_2023_3269880
crossref_primary_10_1109_TII_2023_3329688
crossref_primary_10_1016_j_jisa_2025_104144
crossref_primary_10_1016_j_comnet_2023_109712
crossref_primary_10_1109_TCSII_2023_3249461
crossref_primary_10_1109_TIFS_2024_3451359
crossref_primary_10_1109_TNSE_2024_3397719
crossref_primary_10_1109_TSP_2023_3277211
crossref_primary_10_1109_TSC_2023_3332703
crossref_primary_10_1049_cth2_12761
crossref_primary_10_1109_TNET_2023_3301972
crossref_primary_10_3390_sym17091398
crossref_primary_10_1016_j_knosys_2025_114253
crossref_primary_10_1109_JIOT_2024_3489032
crossref_primary_10_1145_3735125
crossref_primary_10_1016_j_knosys_2025_114494
crossref_primary_10_1007_s10791_025_09676_1
crossref_primary_10_1016_j_iotcps_2023_04_001
crossref_primary_10_1109_TIFS_2024_3416042
crossref_primary_10_1109_TMC_2022_3178167
crossref_primary_10_1109_TDSC_2025_3542437
crossref_primary_10_1016_j_segan_2024_101537
crossref_primary_10_1007_s13042_025_02789_5
crossref_primary_10_3390_app14010351
crossref_primary_10_1109_TIFS_2025_3586491
crossref_primary_10_1007_s10462_024_10969_y
crossref_primary_10_1007_s10586_025_05386_x
crossref_primary_10_1109_JIOT_2024_3467275
crossref_primary_10_1109_MNET_2024_3486228
crossref_primary_10_1016_j_future_2023_01_026
crossref_primary_10_1109_TAI_2024_3524954
crossref_primary_10_1016_j_iot_2023_100875
crossref_primary_10_1016_j_procs_2025_02_064
crossref_primary_10_1109_JPROC_2023_3306773
crossref_primary_10_1016_j_jisa_2025_104127
crossref_primary_10_1109_TSP_2025_3564842
crossref_primary_10_1109_TII_2022_3165869
crossref_primary_10_1016_j_jisa_2024_103890
crossref_primary_10_1145_3727643
crossref_primary_10_3390_s23042112
crossref_primary_10_1109_JIOT_2025_3533087
crossref_primary_10_1038_s41598_025_09672_x
crossref_primary_10_1007_s42514_024_00199_7
crossref_primary_10_1016_j_enbuild_2024_115164
crossref_primary_10_1016_j_neunet_2024_107016
crossref_primary_10_3390_electronics11091449
Cites_doi 10.1561/9781601988515
10.1109/CISS50987.2021.9400318
10.1109/5.726791
10.4171/JEMS/937
10.1145/3133956.3134098
10.3115/v1/D14-1162
10.1109/ACCESS.2019.2919736
10.1109/TSP.2019.2946020
10.1214/aos/1176347978
10.1609/aaai.v33i01.33011544
10.1007/978-3-030-38438-8
10.1057/palgrave.jors.2600425
10.1214/19-aos1828
10.1007/BF01584648
10.1109/MSP.2020.2975749
10.1109/TSMCC.2009.2032660
10.1109/ICDCS47774.2020.00032
10.1109/ICCV48922.2021.00487
10.1137/1.9781611975482.171
10.1561/9781680835090
10.1561/2200000083
10.1145/357172.357176
10.1214/aoms/1177703732
10.1137/100818327
10.1002/SERIES1345
10.1007/PL00011435
10.1007/978-3-319-91578-4
10.1007/11681878_14
10.1109/TSP.2017.2703664
10.3150/14-BEJ645
10.1109/TSP.2019.2893846
10.1145/3154503
10.1145/2897518.2897647
10.1007/BF01580224
10.1137/140957639
10.3150/18-bej1046
10.1016/j.jbi.2019.103291
10.1145/3372297.3417885
10.1214/17-AOS1607
10.1080/10556788.2016.1278445
10.1109/FOCS.2016.85
10.1145/1666420.1666444
10.1109/TSP.2019.2931171
10.1137/13094829X
10.1007/s10957-014-0586-7
10.1145/3133956.3133982
10.1007/978-3-642-04898-2_594
10.1109/TSP.2020.3012952
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2022.3153135
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 1154
ExternalDocumentID 10_1109_TSP_2022_3153135
9721118
Genre orig-research
GrantInformation_xml – fundername: Washington Research Foundation
  funderid: 10.13039/100001906
– fundername: Canadian Institute for Advanced Research; CIFAR
  funderid: 10.13039/100007631
– fundername: NSF
  grantid: CCF-1740551; CCF-1703574; DMS-1839371
– fundername: JP Morgan Ph.D. Fellowship
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-800d178ac86f24eee3a10573ff8f27cb1a2c1584897f91eab8c8f42df9ffd7123
IEDL.DBID RIE
ISICitedReferencesCount 369
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000769985200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:16:25 EDT 2025
Sat Nov 29 04:10:55 EST 2025
Tue Nov 18 21:59:35 EST 2025
Wed Aug 27 02:10:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-800d178ac86f24eee3a10573ff8f27cb1a2c1584897f91eab8c8f42df9ffd7123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1262-8466
PQID 2639931021
PQPubID 85478
PageCount 13
ParticipantIDs proquest_journals_2639931021
ieee_primary_9721118
crossref_citationtrail_10_1109_TSP_2022_3153135
crossref_primary_10_1109_TSP_2022_3153135
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref56
Yang (ref3) 2018; abs/1812.02903
ref59
Nesterov (ref89) 2018
din (ref4) 2019; abs/1901.09888
ref58
Huber (ref35) 2011
ref11
ref55
ref10
ref54
Blanchard (ref49) 2017
Minsker (ref43) 2019
He (ref31) 2018; 31
Alistarh (ref53) 2018
Li (ref20) 2020
Reddi (ref26) 2021
ref50
Shakespeare (ref79)
ref91
Smith (ref29) 2018; 18
ref90
ref46
Caldas (ref77); abs/1812.01097
ref45
ref48
ref47
ref42
ref86
ref41
ref85
ref44
Jain (ref72) 2017; 2
ref88
Bach (ref71) 2013
Karimireddy (ref21) 2020
Weiszfeld (ref14) 1937; 43
Bertsekas (ref28) 1997
Jain (ref73) 2017; 18
ref8
ref7
Sun (ref84) 2019; abs/1911.07963
ref9
Agarwal (ref76) 2020; abs/2003.12880
ref6
ref5
Chen (ref51) 2018
ref82
ref40
Kairouz (ref63); 139
ref80
ref34
ref37
ref75
ref30
ref74
ref33
Yin (ref52) 2018
Smith (ref18) 2017; 30
Zhang (ref83) 2017
Cohen (ref78) 2017; abs/1702.05373
ref2
Nemirovski (ref36) 1983
ref39
Avdiukhin (ref25) 2021; 139
Leblond (ref32) 2018; 19
McMahan (ref1) 2017
Wang (ref66) 2021; abs/2107.06917
Hsu (ref38) 2016; 17
Dinh (ref22) 2020; 33
ref70
ref24
ref68
ref69
ref64
Mohri (ref19) 2019; 97
Donoho (ref67) 1983; 157184
J (ref87) 2013
ref27
Bonawitz (ref13) 2019
Fallah (ref23) 2020
Balle (ref17) 2020
Gafni (ref65) 2021; abs/2103.17150
ref60
ref62
ref61
Go (ref81) 2009
References_xml – volume: abs/1812.02903
  volume-title: CoRR
  year: 2018
  ident: ref3
  article-title: Applied federated learning: Improving google keyboard query suggestions
– ident: ref33
  doi: 10.1561/9781601988515
– ident: ref24
  doi: 10.1109/CISS50987.2021.9400318
– volume: 17
  start-page: 18:1
  year: 2016
  ident: ref38
  article-title: Loss minimization and parameter estimation with heavy tails
  publication-title: J. Mach. Learn. Res.
– ident: ref91
  doi: 10.1109/5.726791
– ident: ref39
  doi: 10.4171/JEMS/937
– ident: ref55
  doi: 10.1145/3133956.3134098
– ident: ref82
  doi: 10.3115/v1/D14-1162
– ident: ref7
  doi: 10.1109/ACCESS.2019.2919736
– volume-title: Parallel and Distributed Computation: Numerical Methods
  year: 1997
  ident: ref28
– ident: ref54
  doi: 10.1109/TSP.2019.2946020
– volume: abs/2107.06917
  volume-title: CoRR
  year: 2021
  ident: ref66
  article-title: A field guide to federated optimization
– ident: ref70
  doi: 10.1214/aos/1176347978
– volume: 139
  start-page: 5201
  volume-title: Proc. ICML
  ident: ref63
  article-title: The distributed discrete Gaussian mechanism for federated learning with secure aggregation
– ident: ref56
  doi: 10.1609/aaai.v33i01.33011544
– volume: 33
  start-page: 21394
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2020
  ident: ref22
  article-title: Personalized federated learning with moreau envelopes
– ident: ref74
  doi: 10.1007/978-3-030-38438-8
– ident: ref86
  doi: 10.1057/palgrave.jors.2600425
– ident: ref40
  doi: 10.1214/19-aos1828
– ident: ref57
  doi: 10.1007/BF01584648
– start-page: 119
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref49
  article-title: Machine learning with adversaries: Byzantine tolerant gradient descent
– volume: 97
  start-page: 4615
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2019
  ident: ref19
  article-title: Agnostic federated learning
– ident: ref27
  doi: 10.1109/MSP.2020.2975749
– volume-title: Problem Complexity and Method Efficiency in Optimization
  year: 1983
  ident: ref36
– ident: ref5
  doi: 10.1109/TSMCC.2009.2032660
– start-page: 1
  year: 2009
  ident: ref81
  article-title: Twitter sentiment classification using distant supervision
– volume: 139
  start-page: 425
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2021
  ident: ref25
  article-title: Federated learning under arbitrary communication patterns
– ident: ref8
  doi: 10.1109/ICDCS47774.2020.00032
– ident: ref9
  doi: 10.1109/ICCV48922.2021.00487
– ident: ref44
  doi: 10.1137/1.9781611975482.171
– ident: ref68
  doi: 10.1561/9781680835090
– ident: ref2
  doi: 10.1561/2200000083
– volume: 31
  start-page: 4541
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2018
  ident: ref31
  article-title: COLA: Decentralized linear learning
– ident: ref48
  doi: 10.1145/357172.357176
– ident: ref34
  doi: 10.1214/aoms/1177703732
– ident: ref85
  doi: 10.1137/100818327
– volume: abs/1901.09888
  volume-title: CoRR
  year: 2019
  ident: ref4
  article-title: Federated collaborative filtering for privacy-preserving personalized recommendation system
– ident: ref10
  doi: 10.1002/SERIES1345
– volume: 19
  start-page: 81:1
  year: 2018
  ident: ref32
  article-title: Improved asynchronous parallel optimization analysis for stochastic incremental methods
  publication-title: J. Mach. Learn. Res.
– ident: ref58
  doi: 10.1007/PL00011435
– volume-title: Introductory Lectures on Convex Optimization
  year: 2018
  ident: ref89
  doi: 10.1007/978-3-319-91578-4
– start-page: 2496
  volume-title: Proc. 23rd Int. Conf. Artif. Intell. Statist.
  year: 2020
  ident: ref17
  article-title: Hypothesis testing interpretations and renyi differential privacy
– year: 2019
  ident: ref43
  article-title: Uniform bounds for robust mean estimators
– volume: abs/1702.05373
  volume-title: CoRR
  year: 2017
  ident: ref78
  article-title: EMNIST: An extension of MNIST to handwritten letters
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2021
  ident: ref26
  article-title: Adaptive federated optimization
– start-page: 374
  volume-title: Proc. Mach. Learn. Syst.
  year: 2019
  ident: ref13
  article-title: Towards federated learning at scale: System design
– ident: ref62
  doi: 10.1007/11681878_14
– volume: 2
  start-page: 2:1
  volume-title: Proc. Conf. Found. Softw. Technol. Theor. Comput. Sci.
  year: 2017
  ident: ref72
  article-title: A Markov chain theory approach to characterizing the minimax optimality of stochastic gradient descent (for least squares
– volume: 18
  start-page: 230:1
  year: 2018
  ident: ref29
  article-title: COCOA: A general framework for communication-efficient distributed optimization
  publication-title: J. Mach. Learn. Res.
– start-page: 902
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2018
  ident: ref51
  article-title: DRACO: Byzantine-resilient distributed training via redundant gradients
– ident: ref45
  doi: 10.1109/TSP.2017.2703664
– ident: ref37
  doi: 10.3150/14-BEJ645
– ident: ref46
  doi: 10.1109/TSP.2019.2893846
– start-page: 4618
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2018
  ident: ref53
  article-title: Byzantine stochastic gradient descent
– ident: ref50
  doi: 10.1145/3154503
– ident: ref61
  doi: 10.1145/2897518.2897647
– ident: ref60
  doi: 10.1007/BF01580224
– ident: ref88
  doi: 10.1137/140957639
– start-page: 3557
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2020
  ident: ref23
  article-title: Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach
– ident: ref41
  doi: 10.3150/18-bej1046
– volume: 43
  start-page: 355
  year: 1937
  ident: ref14
  article-title: On the point for which the sum of the distances to n given points is minimum
  publication-title: Tohoku Math. J., First Ser.
– volume: abs/1812.01097
  volume-title: CoRR
  ident: ref77
  article-title: LEAF: A benchmark for federated settings
– ident: ref6
  doi: 10.1016/j.jbi.2019.103291
– ident: ref12
  doi: 10.1145/3372297.3417885
– ident: ref69
  doi: 10.1214/17-AOS1607
– volume: 30
  start-page: 4424
  volume-title: Proc. Adv. Neural Informat. Process. Syst.
  year: 2017
  ident: ref18
  article-title: Federated multi-task learning
– ident: ref30
  doi: 10.1080/10556788.2016.1278445
– ident: ref42
  doi: 10.1109/FOCS.2016.85
– ident: ref64
  doi: 10.1145/1666420.1666444
– start-page: 773
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2013
  ident: ref71
  article-title: Non-strongly-convex smooth stochastic approximation with convergence rate $O(1/n)$
– ident: ref47
  doi: 10.1109/TSP.2019.2931171
– volume: abs/1911.07963
  volume-title: CoRR
  year: 2019
  ident: ref84
– start-page: 5132
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2020
  ident: ref21
  article-title: Scaffold: Stochastic controlled averaging for federated learning
– ident: ref79
  article-title: The complete works of William Shakespeare
– ident: ref90
  doi: 10.1137/13094829X
– ident: ref59
  doi: 10.1007/s10957-014-0586-7
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2017
  ident: ref83
  article-title: Understanding deep learning requires rethinking generalization
– ident: ref11
  doi: 10.1145/3133956.3133982
– volume: 157184
  start-page: 57
  year: 1983
  ident: ref67
  article-title: The notion of breakdown point
  publication-title: A festschrift Erich L. Lehmann
– start-page: 1248
  volume-title: Robust Statistics. in International Encyclopedia of Statistical Science
  year: 2011
  ident: ref35
  doi: 10.1007/978-3-642-04898-2_594
– start-page: 783
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2013
  ident: ref87
  article-title: Optimization with first-order surrogate functions
– start-page: 429
  volume-title: Proc. Mach. Learn. Syst.
  year: 2020
  ident: ref20
  article-title: Federated optimization in heterogeneous networks
– start-page: 5636
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2018
  ident: ref52
  article-title: Byzantine-robust distributed learning: Towards optimal statistical rates
– volume: 18
  start-page: 223:1
  year: 2017
  ident: ref73
  article-title: Parallelizing stochastic gradient descent for least squares regression: Mini-batching, averaging, and model misspecification
  publication-title: J. Mach. Learn. Res.
– ident: ref75
  doi: 10.1109/TSP.2020.3012952
– volume: abs/2003.12880
  volume-title: CoRR
  year: 2020
  ident: ref76
  article-title: Federated residual learning
– start-page: 1273
  volume-title: Proc. Artif. Intell. Statist.
  year: 2017
  ident: ref1
  article-title: Communication-efficient learning of deep networks from decentralized data
– volume: abs/2103.17150
  volume-title: CoRR
  year: 2021
  ident: ref65
  article-title: Federated learning: A signal processing perspective
– ident: ref80
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0014496
Score 2.7431302
Snippet We present a novel approach to federated learning that endows its aggregation process with greater robustness to potential poisoning of local data or model...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1142
SubjectTerms Agglomeration
Aggregates
Algorithms
Collaborative work
Computer vision
corrupted updates
Corruption
data privacy
distributed learning
Federated learning
Machine learning
Natural language processing
Optimization
Privacy
robust aggregation
Robustness
Servers
Signal processing algorithms
Title Robust Aggregation for Federated Learning
URI https://ieeexplore.ieee.org/document/9721118
https://www.proquest.com/docview/2639931021
Volume 70
WOSCitedRecordID wos000769985200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4UEP_pridEoPXgbWNWm6JMchDg8yhk7ZraRpMgTZZOv8-31JuyoogrcekhK-pHnfy2u-D-CqT61VnKpQm5yGzFgaKpZEYaJznhOheFkueHngo5GYTuW4Adf1XRhjjP_5zNy4R1_Lzxd67Y7Kek5pBgnxFmxx3i_vatUVA8a8FxfShThMBJ9uSpKR7E2expgIUor5Ka44b-z2FYK8p8qPjdhHl-H-_8Z1AHsViwwG5bQfQsPMj2D3m7ZgC7qPi2y9KoLBDDPqmcc_QIIaDJ16BBLMPKikVWfH8Dy8m9zeh5UvQqipJAUGlSgnXCgt-pYyHE2snFtvbK2wlOuMKKoJEgshuZXEqExoYRnNrbQ25xiqTqA5X8zNKQTSZkbFiSYxZ8wmJMPsJTLYhGncBZVuQ28DVaor0XDnXfGW-uQhkimCmzpw0wrcNnTrHu-lYMYfbVsOzLpdhWMbOpvZSKsvapVST6WcEfnZ773OYce9uzwe6UCzWK7NBWzrj-J1tbz0i-UTR0G65Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKagHf01xOrUHLwPrmjRd0uMQx8Q5hk7ZraT5MQTZZOv8-03SrgqK4K2HFxreS_O-l9d8H8BlG2vNKea-UBL7RGnscxIFfiQklYhxmrcLXvp0MGDjcTyswFV5F0Yp5X4-U9f20fXy5Uws7VFZyzLNGEC8BusRITjIb2uVPQNCnBqXAQyhHzE6XjUlg7g1ehqaUhBjU6GaNeek3b6SkFNV-bEVu_zS3f3fzPZgp8CRXicP_D5U1PQAtr-xC9ag-ThLl4vM60xMTT1xEfAMRPW6lj_CQEzpFeSqk0N47t6Obnp-oYzgCxyjzKSVQCLKuGBtjYmZTcitXm-oNdOYihRxLJCBFiymOkaKp0wwTbDUsdaSmmR1BNXpbKqOwYt1qngYCRRSQnSEUlO_BMqYEGH2QS7q0Fq5KhEFbbhVr3hLXPkQxIlxbmKdmxTOrUOzHPGeU2b8YVuzziztCj_WobGKRlJ8U4sEOzBlpchPfh91AZu90UM_6d8N7k9hy74nPyxpQDWbL9UZbIiP7HUxP3cL5xMwHL4s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Aggregation+for+Federated+Learning&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Pillutla%2C+Krishna&rft.au=Kakade%2C+Sham+M.&rft.au=Harchaoui%2C+Zaid&rft.date=2022&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=70&rft.spage=1142&rft.epage=1154&rft_id=info:doi/10.1109%2FTSP.2022.3153135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2022_3153135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon