Blind and Semi-Blind Channel Estimation/Equalization for Poisson Channels in Optical Wireless Scattering Communication Systems

The communication systems for Poisson channels require long pilot for channel estimation and may result in large percentage of overhead due to the signal-dependent noise of Poisson-distributed signal, i.e., both signal part and noise part experience random processes. In this paper, both blind and se...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on wireless communications Ročník 21; číslo 8; s. 5930 - 5946
Hlavní autoři: Liu, Beiyuan, Gong, Chen, Cheng, Julian, Xu, Zhengyuan, Liu, Jiajia
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1536-1276, 1558-2248
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The communication systems for Poisson channels require long pilot for channel estimation and may result in large percentage of overhead due to the signal-dependent noise of Poisson-distributed signal, i.e., both signal part and noise part experience random processes. In this paper, both blind and semi-blind channel estimation methods are studied to shorten the overhead and increase the transmission efficiency for Poisson channels. First, fractionally spaced equalizers are proposed based on modified constant modulus algorithm (CMA) and subspace (SS). Second, a data-aided iterative channel estimation (ICE) is designed and analyzed in terms of its asymptotic unbiasedness and convergence. The proposed methods are evaluated based on both a constant channel scenario and a varying channel scenario. Numerical simulation results show that the modified CMA has the worst bit-error rate performance but requires the lowest computational complexity. Besides, both SS based channel estimation and ICE have negligible overhead and comparable bit-error rate performances with respect to the conventional periodic pilot based channel estimation having 50% overhead.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2022.3144360