Probabilistic Control of Heterogeneous Swarms Subject to Graph Temporal Logic Specifications: A Decentralized and Scalable Approach
We develop a probabilistic control algorithm, GTLProCo , for swarms of agents with heterogeneous dynamics and objectives, subject to high-level task specifications. The resulting algorithm not only achieves decentralized control of the swarm but also significantly improves scalability over state-of-...
Uložené v:
| Vydané v: | IEEE transactions on automatic control Ročník 68; číslo 4; s. 2245 - 2260 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We develop a probabilistic control algorithm, GTLProCo , for swarms of agents with heterogeneous dynamics and objectives, subject to high-level task specifications. The resulting algorithm not only achieves decentralized control of the swarm but also significantly improves scalability over state-of-the-art existing algorithms. Specifically, we study a setting in which the agents move along the nodes of a graph, and the high-level task specifications for the swarm are expressed in a recently proposed language called graph temporal logic (GTL). By constraining the distribution of the swarm over the nodes of the graph, GTL can specify a wide range of properties, including safety, progress, and response. GTLProCo , with a computational complexity agnostic to the number of agents comprising the swarm, controls the density distribution of the swarm in a decentralized and probabilistic manner. To this end, it synthesizes a time-varying Markov chain modeling the time evolution of the density distribution under the GTL constraints. We first identify a subset of GTL, namely reach-avoid specifications, for which we can reduce the synthesis of such a Markov chain to either linear or semidefinite programs. Then, in the general case, we formulate the synthesis of the Markov chain as a mixed-integer nonlinear program (MINLP). We exploit the structure of the problem to provide an efficient sequential mixed-integer linear programming scheme with trust regions to solve the MINLP. We empirically demonstrate that our sequential scheme is at least three orders of magnitude faster than off-the-shelf MINLP solvers and illustrate the effectiveness of GTLProCo in several swarm scenarios. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2022.3176797 |