A Distributed Optimization Algorithm for the Predictive Control of Smart Grids

In this paper, we present a hierarchical, iterative distributed optimization algorithm and show that the algorithm converges to the global solution of a particular optimization problem. The motivation for the distributed optimization problem is the predictive control of a smart grid, in which the st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 61; číslo 12; s. 3898 - 3911
Hlavní autoři: Braun, Philipp, Grune, Lars, Kellett, Christopher M., Weller, Steven R., Worthmann, Karl
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we present a hierarchical, iterative distributed optimization algorithm and show that the algorithm converges to the global solution of a particular optimization problem. The motivation for the distributed optimization problem is the predictive control of a smart grid, in which the states of charge of a network of residential-scale batteries are optimally coordinated so as to minimize variability in the aggregated power supplied to/from the grid by the residential network. The distributed algorithm developed in this paper calls for communication between a central entity and an optimizing agent associated with each battery, but does not require communication between agents. The distributed algorithm is shown to achieve the performance of a large-scale centralized optimization algorithm, but with greatly reduced communication overhead and computational burden. A numerical case study using data from an Australian electricity distribution network is presented to demonstrate the performance of the distributed optimization algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2016.2525808