On the Convergence of the Iterative Shrinkage/Thresholding Algorithm With a Weakly Convex Penalty
We consider the iterative shrinkage/thresholding algorithm (ISTA) applied to a cost function composed of a data fidelity term and a penalty term. The penalty is nonconvex but the concavity of the penalty is accounted for by the data fidelity term so that the overall cost function is convex. We provi...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 64; číslo 6; s. 1597 - 1608 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
15.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the iterative shrinkage/thresholding algorithm (ISTA) applied to a cost function composed of a data fidelity term and a penalty term. The penalty is nonconvex but the concavity of the penalty is accounted for by the data fidelity term so that the overall cost function is convex. We provide a generalization of the convergence result for ISTA viewed as a forward-backward splitting algorithm. We also demonstrate experimentally that for the current setup, using large stepsizes in ISTA can accelerate convergence more than existing schemes proposed for the convex case, like TwIST or FISTA. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2015.2502551 |