A Variable Step-Size Partial-Update Normalized Least Mean Square Algorithm for Second-Order Adaptive Volterra Filters
Partial-update (PU) algorithms offer reduced computational complexity to adaptive second-order Volterra filters (SOV) in nonlinear systems while retaining acceptable performance. In this paper, a new selective partial-update technique for the normalized LMS (NLMS) SOV algorithm is proposed, which re...
Saved in:
| Published in: | Circuits, systems, and signal processing Vol. 39; no. 12; pp. 6073 - 6097 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2020
|
| Subjects: | |
| ISSN: | 0278-081X, 1531-5878 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Partial-update (PU) algorithms offer reduced computational complexity to adaptive second-order Volterra filters (SOV) in nonlinear systems while retaining acceptable performance. In this paper, a new selective partial-update technique for the normalized LMS (NLMS) SOV algorithm is proposed, which requires lesser number of comparison operations per iteration than existing methods while providing close performance to the standard M-Max NLMS-SOV algorithm. Convergence properties of the proposed algorithm are enhanced by making the algorithm step-size time varying based on the natural logarithm function. Simulation experiments compare the proposed algorithm with existing PU and variable step-size NLMS-SOV algorithms, which illustrate the advantageous properties of the new algorithm. The proposed algorithm achieves both lower steady-state misalignment and faster convergence speed when compared with the fixed step-size full-update NLMS-SOV algorithm. Simulations also show that comparison operations overhead of the proposed algorithm is reduced significantly compared to that of the standard M-Max NLMS-SOV algorithm. |
|---|---|
| ISSN: | 0278-081X 1531-5878 |
| DOI: | 10.1007/s00034-020-01446-2 |