A Variable Step-Size Partial-Update Normalized Least Mean Square Algorithm for Second-Order Adaptive Volterra Filters

Partial-update (PU) algorithms offer reduced computational complexity to adaptive second-order Volterra filters (SOV) in nonlinear systems while retaining acceptable performance. In this paper, a new selective partial-update technique for the normalized LMS (NLMS) SOV algorithm is proposed, which re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Circuits, systems, and signal processing Ročník 39; číslo 12; s. 6073 - 6097
Hlavní autori: Mayyas, Khaled, Afeef, Liza
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.12.2020
Predmet:
ISSN:0278-081X, 1531-5878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Partial-update (PU) algorithms offer reduced computational complexity to adaptive second-order Volterra filters (SOV) in nonlinear systems while retaining acceptable performance. In this paper, a new selective partial-update technique for the normalized LMS (NLMS) SOV algorithm is proposed, which requires lesser number of comparison operations per iteration than existing methods while providing close performance to the standard M-Max NLMS-SOV algorithm. Convergence properties of the proposed algorithm are enhanced by making the algorithm step-size time varying based on the natural logarithm function. Simulation experiments compare the proposed algorithm with existing PU and variable step-size NLMS-SOV algorithms, which illustrate the advantageous properties of the new algorithm. The proposed algorithm achieves both lower steady-state misalignment and faster convergence speed when compared with the fixed step-size full-update NLMS-SOV algorithm. Simulations also show that comparison operations overhead of the proposed algorithm is reduced significantly compared to that of the standard M-Max NLMS-SOV algorithm.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-020-01446-2