A Variable Step-Size Partial-Update Normalized Least Mean Square Algorithm for Second-Order Adaptive Volterra Filters

Partial-update (PU) algorithms offer reduced computational complexity to adaptive second-order Volterra filters (SOV) in nonlinear systems while retaining acceptable performance. In this paper, a new selective partial-update technique for the normalized LMS (NLMS) SOV algorithm is proposed, which re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing Jg. 39; H. 12; S. 6073 - 6097
Hauptverfasser: Mayyas, Khaled, Afeef, Liza
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2020
Schlagworte:
ISSN:0278-081X, 1531-5878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Partial-update (PU) algorithms offer reduced computational complexity to adaptive second-order Volterra filters (SOV) in nonlinear systems while retaining acceptable performance. In this paper, a new selective partial-update technique for the normalized LMS (NLMS) SOV algorithm is proposed, which requires lesser number of comparison operations per iteration than existing methods while providing close performance to the standard M-Max NLMS-SOV algorithm. Convergence properties of the proposed algorithm are enhanced by making the algorithm step-size time varying based on the natural logarithm function. Simulation experiments compare the proposed algorithm with existing PU and variable step-size NLMS-SOV algorithms, which illustrate the advantageous properties of the new algorithm. The proposed algorithm achieves both lower steady-state misalignment and faster convergence speed when compared with the fixed step-size full-update NLMS-SOV algorithm. Simulations also show that comparison operations overhead of the proposed algorithm is reduced significantly compared to that of the standard M-Max NLMS-SOV algorithm.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-020-01446-2