Additive evaluations of the number of divisors

If m and n are positive integers, then a m ( n ) denotes the number of the parts congruent to 0 modulo m in all the partitions of n . On the strength of Euler’s pentagonal number theorem, this paper shows that the number of positive divisors of n can be expressed additively in terms of the partition...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Ramanujan journal Ročník 63; číslo 3; s. 583 - 601
Hlavný autor: Merca, Mircea
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.03.2024
Predmet:
ISSN:1382-4090, 1572-9303
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:If m and n are positive integers, then a m ( n ) denotes the number of the parts congruent to 0 modulo m in all the partitions of n . On the strength of Euler’s pentagonal number theorem, this paper shows that the number of positive divisors of n can be expressed additively in terms of the partition function a m ( · ) .
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-023-00773-7