Approximation algorithms for flexible graph connectivity

We present approximation algorithms for several network design problems in the model of flexible graph connectivity (Adjiashvili et al., in: IPCO, pp 13–26, 2020, Math Program 1–33, 2021). Let k ≥ 1 , p ≥ 1 and q ≥ 0 be integers. In an instance of the ( p ,  q )-Flexible Graph Connectivity problem,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 204; číslo 1-2; s. 493 - 516
Hlavní autori: Boyd, Sylvia, Cheriyan, Joseph, Haddadan, Arash, Ibrahimpur, Sharat
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present approximation algorithms for several network design problems in the model of flexible graph connectivity (Adjiashvili et al., in: IPCO, pp 13–26, 2020, Math Program 1–33, 2021). Let k ≥ 1 , p ≥ 1 and q ≥ 0 be integers. In an instance of the ( p ,  q )-Flexible Graph Connectivity problem, denoted ( p , q ) -FGC , we have an undirected connected graph G = ( V , E ) , a partition of E into a set of safe edges S and a set of unsafe edges U , and nonnegative costs c : E → R ≥ 0 on the edges. A subset F ⊆ E of edges is feasible for the ( p , q ) -FGC problem if for any set F ′ ⊆ U with | F ′ | ≤ q , the subgraph ( V , F \ F ′ ) is p -edge connected. The algorithmic goal is to find a feasible solution F that minimizes c ( F ) = ∑ e ∈ F c e . We present a simple 2-approximation algorithm for the ( 1 , 1 ) -FGC problem via a reduction to the minimum-cost rooted 2-arborescence problem. This improves on the 2.527-approximation algorithm of Adjiashvili et al. Our 2-approximation algorithm for the ( 1 , 1 ) -FGC problem extends to a ( k + 1 ) -approximation algorithm for the ( 1 , k ) -FGC problem. We present a 4-approximation algorithm for the ( k , 1 ) -FGC problem, and an O ( q log | V | ) -approximation algorithm for the ( p , q ) -FGC problem. Finally, we improve on the result of Adjiashvili et al. for the unweighted  ( 1 , 1 ) -FGC problem by presenting a 16/11-approximation algorithm. The ( p , q ) -FGC problem is related to the well-known Capacitated k - Connected Subgraph problem (denoted Cap- k -ECSS ) that arises in the area of Capacitated Network Design. We give a min ( k , 2 u max ) -approximation algorithm for the Cap- k -ECSS problem, where u max denotes the maximum capacity of an edge.
AbstractList We present approximation algorithms for several network design problems in the model of flexible graph connectivity (Adjiashvili et al., in: IPCO, pp 13–26, 2020, Math Program 1–33, 2021). Let k ≥ 1 , p ≥ 1 and q ≥ 0 be integers. In an instance of the ( p ,  q )-Flexible Graph Connectivity problem, denoted ( p , q ) -FGC , we have an undirected connected graph G = ( V , E ) , a partition of E into a set of safe edges S and a set of unsafe edges U , and nonnegative costs c : E → R ≥ 0 on the edges. A subset F ⊆ E of edges is feasible for the ( p , q ) -FGC problem if for any set F ′ ⊆ U with | F ′ | ≤ q , the subgraph ( V , F \ F ′ ) is p -edge connected. The algorithmic goal is to find a feasible solution F that minimizes c ( F ) = ∑ e ∈ F c e . We present a simple 2-approximation algorithm for the ( 1 , 1 ) -FGC problem via a reduction to the minimum-cost rooted 2-arborescence problem. This improves on the 2.527-approximation algorithm of Adjiashvili et al. Our 2-approximation algorithm for the ( 1 , 1 ) -FGC problem extends to a ( k + 1 ) -approximation algorithm for the ( 1 , k ) -FGC problem. We present a 4-approximation algorithm for the ( k , 1 ) -FGC problem, and an O ( q log | V | ) -approximation algorithm for the ( p , q ) -FGC problem. Finally, we improve on the result of Adjiashvili et al. for the unweighted  ( 1 , 1 ) -FGC problem by presenting a 16/11-approximation algorithm. The ( p , q ) -FGC problem is related to the well-known Capacitated k - Connected Subgraph problem (denoted Cap- k -ECSS ) that arises in the area of Capacitated Network Design. We give a min ( k , 2 u max ) -approximation algorithm for the Cap- k -ECSS problem, where u max denotes the maximum capacity of an edge.
Author Haddadan, Arash
Cheriyan, Joseph
Boyd, Sylvia
Ibrahimpur, Sharat
Author_xml – sequence: 1
  givenname: Sylvia
  surname: Boyd
  fullname: Boyd, Sylvia
  organization: School of Electrical Engineering and Computer Science, University of Ottawa
– sequence: 2
  givenname: Joseph
  orcidid: 0000-0003-0316-7650
  surname: Cheriyan
  fullname: Cheriyan, Joseph
  email: jcheriyan@uwaterloo.ca
  organization: Department of Combinatorics and Optimization, University of Waterloo
– sequence: 3
  givenname: Arash
  surname: Haddadan
  fullname: Haddadan, Arash
  organization: Modeling and Optimization, Amazon Inc
– sequence: 4
  givenname: Sharat
  orcidid: 0000-0002-1575-9648
  surname: Ibrahimpur
  fullname: Ibrahimpur, Sharat
  organization: Department of Mathematics, London School of Economics and Political Science
BookMark eNp9z71OwzAQwHELFYm28AJMeQHDXZz4Y6wqPipVYoHZSozdukrtyA6ofXtCy8TQ6ab_3f1mZBJisITcIzwggHjMCAiCQskooOJI6ysyxYpxWvGKT8gUoKxpzRFuyCznHQAgk3JK5KLvUzz4fTP4GIqm28Tkh-0-Fy6mwnX24NvOFpvU9NvCxBCsGfy3H4635No1XbZ3f3NOPp6f3pevdP32slou1tSUCgfKhRV1BUow2xrBobJSSYc1osNPK52wkrdoEFgLJThnWq5MiVIxI5RoJZuT8rzXpJhzsk73afw2HTWC_rXrs12Pdn2y63qM5L_I-OEkHFLju8spO6d5vBM2Nuld_EphJF6qfgDQPnA2
CitedBy_id crossref_primary_10_1007_s00453_024_01235_2
crossref_primary_10_1109_TNSE_2025_3567348
Cites_doi 10.1007/978-3-030-45771-6_2
10.1007/BF01202790
10.1007/s004930170004
10.1007/s00493-014-2960-3
10.1007/s10107-021-01664-9
10.1145/174652.174654
10.1007/978-3-662-04565-7
10.1287/trsc.18.1.1
10.1006/jagm.1999.1039
10.1007/BF01299747
10.1137/S0895480102405476
10.1007/s00453-013-9862-4
10.1137/080732572
10.1137/S0895480194271323
10.1002/net.20289
10.1145/3341599
10.1145/2939672.2939865
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10107-023-01961-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 516
ExternalDocumentID 10_1007_s10107_023_01961_5
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2019-04197; 327620-09
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: National Science Foundation
  grantid: CCF-1918656
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c291t-67e7540973ebc7604e898f1511f1de8f7e86b1c103b020ffcb69c21893c797b83
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000980442100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Sat Nov 29 03:34:04 EST 2025
Tue Nov 18 22:34:14 EST 2025
Fri Feb 21 02:42:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Secondary 90C17
Network design
Edge-connectivity of graphs
05C40
Reliability of networks
Approximation algorithms
90C59
90C27
Combinatorial optimization
Primary 68W25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-67e7540973ebc7604e898f1511f1de8f7e86b1c103b020ffcb69c21893c797b83
ORCID 0000-0002-1575-9648
0000-0003-0316-7650
PageCount 24
ParticipantIDs crossref_primary_10_1007_s10107_023_01961_5
crossref_citationtrail_10_1007_s10107_023_01961_5
springer_journals_10_1007_s10107_023_01961_5
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References GabowHNGoemansMXTardosÉWilliamsonDPApproximating the smallest k-edge connected spanning subgraph by LP-roundingNetworks2009534345357253345410.1002/net.202891205.05125
GabowHNAn ear decomposition approach to approximating the smallest 3-edge connected spanning subgraph of a multigraphSIAM J. Discrete Math.20041814170211248810.1137/S08954801024054761071.05047
Karger, D.R.: Global min-cuts in RNC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{R}}{\cal{N}}{\cal{C}}$$\end{document}, and other ramifications of a simple min-cut algorithm. In: Proceedings of the 4th Symposium on Discrete Algorithms, pp. 21–30 (1993)
JainKA factor 2 approximation algorithm for the generalized Steiner network problemCombinatorica20012113960180571310.1007/s0049301700041107.68533
HunkenschröderCVempalaSVettaAA 4/3-approximation algorithm for the minimum 2-edge connected subgraph problemACM Trans. Algorithms2019154128402400110.1145/33415991454.68184
ChakrabartyDChekuriCKhannaSKorulaNApproximability of capacitated network designAlgorithmica2015722493514334309910.1007/s00453-013-9862-41327.90023
WilliamsonDPGoemansMXMihailMVaziraniVVA primal–dual approximation algorithm for generalized Steiner network problemsCombinatorica1995153435454135728710.1007/BF012997470838.90133
Rozenshtein, P., Gionis, A., Prakash, B.A., Vreeken, J.: Reconstructing an epidemic over time. In: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining, pp. 1835–1844 (2016)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer-Verlag, Berlin Heidelberg (2003)
SnyderLV ScaparraMPDaskinMSChurchRLPlanning for Disruptions in Supply Chain Networks2014HanoverInstitute for Operations Research and the Management Sciences2342571139.90439
VaziraniVVApproximation Algorithms2003BerlinSpringer10.1007/978-3-662-04565-71005.68002
Goemans, M.X., Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, É., Williamson, D.P.: Improved approximation algorithms for network design problems. In: Proceedings of the 5th Symposium on Discrete Algorithms, pp. 223–232 (1994)
NagamochiHNishimuraKIbarakiTComputing all small cuts in an undirected networkSIAM J. Discrete Math.1997103469481145995210.1137/S08954801942713230884.05060
FleischerLBuilding chain and cactus representations of all minimum cuts from Hao–Orlin in the same asymptotic run timeJ. Algorithms19993315172171269210.1006/jagm.1999.10390937.68154
SeböAVygenJShorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphsCombinatorica2014345597629328591010.1007/s00493-014-2960-31340.90201
Adjiashvili, D., Hommelsheim, F., Mühlenthaler, M.: Flexible graph connectivity. Math. Program. 1–33 (2021)
KhullerSVishkinUBiconnectivity approximations and graph carvingsJ. ACM1994412214235136920010.1145/174652.1746540822.68082
Adjiashvili, D., Hommelsheim, F., Mühlenthaler, M.: Flexible graph connectivity. In: Proceedings of the 21st Integer Programming and Combinatorial Optimization Conference, Volume 12125 of Lecture Notes in Computer Science, pp. 13–26 (2020)
GabowHNGallagherSIterated rounding algorithms for the smallest k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}$$\end{document}-edge connected spanning subgraphSIAM J. Comput.201241161103288832210.1137/0807325721243.68225
GoemansMX WilliamsonDPThe Primal–Dual Method for Approximation Algorithms and Its Application to Network Design Problems, Chapter 41997BostonPWS Publishing Company1441911415.90101
FrankAConservative weightings and ear-decompositions of graphsCombinatorica19931316581122117710.1007/BF012027900779.05033
MagnantiTLWongRTNetwork design and transportation planning: models and algorithmsTransp. Sci.198418115510.1287/trsc.18.1.10598.90038
A Frank (1961_CR5) 1993; 13
K Jain (1961_CR12) 2001; 21
LV Snyder (1961_CR20) 2014
S Khuller (1961_CR14) 1994; 41
VV Vazirani (1961_CR21) 2003
TL Magnanti (1961_CR15) 1984; 18
1961_CR2
HN Gabow (1961_CR6) 2004; 18
1961_CR1
HN Gabow (1961_CR7) 2012; 41
1961_CR13
A Sebö (1961_CR19) 2014; 34
DP Williamson (1961_CR22) 1995; 15
1961_CR9
D Chakrabarty (1961_CR3) 2015; 72
HN Gabow (1961_CR8) 2009; 53
1961_CR17
C Hunkenschröder (1961_CR11) 2019; 15
1961_CR18
L Fleischer (1961_CR4) 1999; 33
MX Goemans (1961_CR10) 1997
H Nagamochi (1961_CR16) 1997; 10
References_xml – reference: Karger, D.R.: Global min-cuts in RNC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{R}}{\cal{N}}{\cal{C}}$$\end{document}, and other ramifications of a simple min-cut algorithm. In: Proceedings of the 4th Symposium on Discrete Algorithms, pp. 21–30 (1993)
– reference: NagamochiHNishimuraKIbarakiTComputing all small cuts in an undirected networkSIAM J. Discrete Math.1997103469481145995210.1137/S08954801942713230884.05060
– reference: VaziraniVVApproximation Algorithms2003BerlinSpringer10.1007/978-3-662-04565-71005.68002
– reference: GabowHNGoemansMXTardosÉWilliamsonDPApproximating the smallest k-edge connected spanning subgraph by LP-roundingNetworks2009534345357253345410.1002/net.202891205.05125
– reference: GoemansMX WilliamsonDPThe Primal–Dual Method for Approximation Algorithms and Its Application to Network Design Problems, Chapter 41997BostonPWS Publishing Company1441911415.90101
– reference: FleischerLBuilding chain and cactus representations of all minimum cuts from Hao–Orlin in the same asymptotic run timeJ. Algorithms19993315172171269210.1006/jagm.1999.10390937.68154
– reference: WilliamsonDPGoemansMXMihailMVaziraniVVA primal–dual approximation algorithm for generalized Steiner network problemsCombinatorica1995153435454135728710.1007/BF012997470838.90133
– reference: ChakrabartyDChekuriCKhannaSKorulaNApproximability of capacitated network designAlgorithmica2015722493514334309910.1007/s00453-013-9862-41327.90023
– reference: Adjiashvili, D., Hommelsheim, F., Mühlenthaler, M.: Flexible graph connectivity. Math. Program. 1–33 (2021)
– reference: GabowHNAn ear decomposition approach to approximating the smallest 3-edge connected spanning subgraph of a multigraphSIAM J. Discrete Math.20041814170211248810.1137/S08954801024054761071.05047
– reference: JainKA factor 2 approximation algorithm for the generalized Steiner network problemCombinatorica20012113960180571310.1007/s0049301700041107.68533
– reference: Adjiashvili, D., Hommelsheim, F., Mühlenthaler, M.: Flexible graph connectivity. In: Proceedings of the 21st Integer Programming and Combinatorial Optimization Conference, Volume 12125 of Lecture Notes in Computer Science, pp. 13–26 (2020)
– reference: HunkenschröderCVempalaSVettaAA 4/3-approximation algorithm for the minimum 2-edge connected subgraph problemACM Trans. Algorithms2019154128402400110.1145/33415991454.68184
– reference: KhullerSVishkinUBiconnectivity approximations and graph carvingsJ. ACM1994412214235136920010.1145/174652.1746540822.68082
– reference: FrankAConservative weightings and ear-decompositions of graphsCombinatorica19931316581122117710.1007/BF012027900779.05033
– reference: MagnantiTLWongRTNetwork design and transportation planning: models and algorithmsTransp. Sci.198418115510.1287/trsc.18.1.10598.90038
– reference: GabowHNGallagherSIterated rounding algorithms for the smallest k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}$$\end{document}-edge connected spanning subgraphSIAM J. Comput.201241161103288832210.1137/0807325721243.68225
– reference: Goemans, M.X., Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, É., Williamson, D.P.: Improved approximation algorithms for network design problems. In: Proceedings of the 5th Symposium on Discrete Algorithms, pp. 223–232 (1994)
– reference: SeböAVygenJShorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphsCombinatorica2014345597629328591010.1007/s00493-014-2960-31340.90201
– reference: Rozenshtein, P., Gionis, A., Prakash, B.A., Vreeken, J.: Reconstructing an epidemic over time. In: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining, pp. 1835–1844 (2016)
– reference: SnyderLV ScaparraMPDaskinMSChurchRLPlanning for Disruptions in Supply Chain Networks2014HanoverInstitute for Operations Research and the Management Sciences2342571139.90439
– reference: Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer-Verlag, Berlin Heidelberg (2003)
– ident: 1961_CR1
  doi: 10.1007/978-3-030-45771-6_2
– volume: 13
  start-page: 65
  issue: 1
  year: 1993
  ident: 1961_CR5
  publication-title: Combinatorica
  doi: 10.1007/BF01202790
– volume: 21
  start-page: 39
  issue: 1
  year: 2001
  ident: 1961_CR12
  publication-title: Combinatorica
  doi: 10.1007/s004930170004
– volume: 34
  start-page: 597
  issue: 5
  year: 2014
  ident: 1961_CR19
  publication-title: Combinatorica
  doi: 10.1007/s00493-014-2960-3
– ident: 1961_CR2
  doi: 10.1007/s10107-021-01664-9
– volume: 41
  start-page: 214
  issue: 2
  year: 1994
  ident: 1961_CR14
  publication-title: J. ACM
  doi: 10.1145/174652.174654
– volume-title: Approximation Algorithms
  year: 2003
  ident: 1961_CR21
  doi: 10.1007/978-3-662-04565-7
– volume: 18
  start-page: 1
  issue: 1
  year: 1984
  ident: 1961_CR15
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.18.1.1
– ident: 1961_CR9
– volume: 33
  start-page: 51
  issue: 1
  year: 1999
  ident: 1961_CR4
  publication-title: J. Algorithms
  doi: 10.1006/jagm.1999.1039
– volume: 15
  start-page: 435
  issue: 3
  year: 1995
  ident: 1961_CR22
  publication-title: Combinatorica
  doi: 10.1007/BF01299747
– ident: 1961_CR18
– start-page: 144
  volume-title: The Primal–Dual Method for Approximation Algorithms and Its Application to Network Design Problems, Chapter 4
  year: 1997
  ident: 1961_CR10
– volume: 18
  start-page: 41
  issue: 1
  year: 2004
  ident: 1961_CR6
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S0895480102405476
– volume: 72
  start-page: 493
  issue: 2
  year: 2015
  ident: 1961_CR3
  publication-title: Algorithmica
  doi: 10.1007/s00453-013-9862-4
– ident: 1961_CR13
– volume: 41
  start-page: 61
  issue: 1
  year: 2012
  ident: 1961_CR7
  publication-title: SIAM J. Comput.
  doi: 10.1137/080732572
– volume: 10
  start-page: 469
  issue: 3
  year: 1997
  ident: 1961_CR16
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S0895480194271323
– start-page: 234
  volume-title: Planning for Disruptions in Supply Chain Networks
  year: 2014
  ident: 1961_CR20
– volume: 53
  start-page: 345
  issue: 4
  year: 2009
  ident: 1961_CR8
  publication-title: Networks
  doi: 10.1002/net.20289
– volume: 15
  start-page: 1
  issue: 4
  year: 2019
  ident: 1961_CR11
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3341599
– ident: 1961_CR17
  doi: 10.1145/2939672.2939865
SSID ssj0001388
Score 2.4399688
Snippet We present approximation algorithms for several network design problems in the model of flexible graph connectivity (Adjiashvili et al., in: IPCO, pp 13–26,...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 493
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Theoretical
Title Approximation algorithms for flexible graph connectivity
URI https://link.springer.com/article/10.1007/s10107-023-01961-5
Volume 204
WOSCitedRecordID wos000980442100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M2P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCDb7G-yMGbBrJ57M4ei1g8aBFf9BZ2N7taqK00Ufz57uZRW5CCHgOTEL7M7veRnfkG4IzZpBUZQV-FPPBjk3BfGJR2uVv6pjEnRpdf-ob1etjv87u6KSxvqt2bI8lyp55pdiPut1ro6n84JX6yDCuW7tANbLh_eJ7uvyRCbAa1OnVQt8r8_ox5Opo_Cy0pprv5v5fbgo1aUnqdKge2YUmPdmB9xmjQXt1O3VnzXcCOMxL_GlRdi54Yvowng-L1LfesgvWMs8iUQ-2VXtaecpUwqpoxsQdP3avHy2u_nqDgoCeFT5lmiXO0irRUjAaxRo7GkjwxJNNomEYqiSJBJK1sNEZJypUlfR4pxpnEaB9ao_FIH4AnlOGCU0VJFsQSY8EyFcZSqBADzJhsA2mATFVtL-6mXAzTH2Nkh1FqMUpLjNKkDefTe94rc42F0RcN9mm90PIF4Yd_Cz-CtdDqlaq87BhaxeRDn8Cq-iwG-eS0zLBvgfbIew
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1ife_CmgWwe-zgWsVRsi2iV3kJ2s6uF2koTxZ_vbh61BSnoMTAJ4cvsfh_ZmW8ALqhJ2jjBzJEed51Ah9yJNRNmuRv6JgHHWuVfuk27Xdbv8_uyKSytqt2rI8l8p55pdsP2t5pn6384wU64DCuBYSzrmP_w-Dzdf7HPWDWo1aqDslXm92fM09H8WWhOMc2t_73cNmyWkhI1ihzYgSU12oWNGaNBc9WZurOme8Aa1kj8a1B0LaJ4-DKeDLLXtxQZBYu0tcgUQ4VyL2skbSWMLGZM7MNT86Z33XLKCQoWepw5hCoaWkcrXwlJiRsoxpk2JI81ThTTVDEisMSuL4xs1FoKwqUhfe5Lyqlg_gHURuOROgQUS81jTiTBiRsIFsQ0kV4gYukxlyVU1AFXQEaytBe3Uy6G0Y8xssUoMhhFOUZRWIfL6T3vhbnGwuirCvuoXGjpgvCjv4Wfw1qr12lH7dvu3TGse0a7FKVmJ1DLJh_qFFblZzZIJ2d5tn0D8drLXw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60iuiDt1jPPPimodkcezwWtSjWUvCgbyG72a2FmpYmij_f3Ry1BSmIj4HJEmZmM1-y33wDcEF00kYxorZwmWP7KmB2pCjX212Xb-wzpGQe6TbpdGivx7ozXfw52706kix6GoxKU5I1xrFqzDS-IfOLzTVcIIaRHSzDim-I9OZ7_el1-i5GHqXV0FaDFMq2md_XmC9N8-eieblpbf3_Qbdhs4SaVrPIjR1YkskubMwIEOqrx6lqa7oHtGkExr8GRTejFQ37o8kge3tPLY1sLWWkM_lQWrnGtSUMQ0YUsyf24aV1-3x9Z5eTFUxIUGZjIklglK48yQXBji8po0oXf6RQLKkikmKOBHI8ruGkUoJjJjQYYJ4gjHDqHUAtGSXyEKxIKBYxLDCKHZ9TPyKxcH0eCZc6NCa8DqhyaihK2XEz_WIY_ggmGx-F2kdh7qMwqMPl9J5xIbqx0PqqikNYbsB0gfnR38zPYa170wrb952HY1h3NaQpGGgnUMsmH_IUVsVnNkgnZ3nifQNbXNRD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+algorithms+for+flexible+graph+connectivity&rft.jtitle=Mathematical+programming&rft.au=Boyd%2C+Sylvia&rft.au=Cheriyan%2C+Joseph&rft.au=Haddadan%2C+Arash&rft.au=Ibrahimpur%2C+Sharat&rft.date=2024-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=204&rft.issue=1-2&rft.spage=493&rft.epage=516&rft_id=info:doi/10.1007%2Fs10107-023-01961-5&rft.externalDocID=10_1007_s10107_023_01961_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon