Approximation algorithms for flexible graph connectivity

We present approximation algorithms for several network design problems in the model of flexible graph connectivity (Adjiashvili et al., in: IPCO, pp 13–26, 2020, Math Program 1–33, 2021). Let k ≥ 1 , p ≥ 1 and q ≥ 0 be integers. In an instance of the ( p ,  q )-Flexible Graph Connectivity problem,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 204; číslo 1-2; s. 493 - 516
Hlavní autoři: Boyd, Sylvia, Cheriyan, Joseph, Haddadan, Arash, Ibrahimpur, Sharat
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present approximation algorithms for several network design problems in the model of flexible graph connectivity (Adjiashvili et al., in: IPCO, pp 13–26, 2020, Math Program 1–33, 2021). Let k ≥ 1 , p ≥ 1 and q ≥ 0 be integers. In an instance of the ( p ,  q )-Flexible Graph Connectivity problem, denoted ( p , q ) -FGC , we have an undirected connected graph G = ( V , E ) , a partition of E into a set of safe edges S and a set of unsafe edges U , and nonnegative costs c : E → R ≥ 0 on the edges. A subset F ⊆ E of edges is feasible for the ( p , q ) -FGC problem if for any set F ′ ⊆ U with | F ′ | ≤ q , the subgraph ( V , F \ F ′ ) is p -edge connected. The algorithmic goal is to find a feasible solution F that minimizes c ( F ) = ∑ e ∈ F c e . We present a simple 2-approximation algorithm for the ( 1 , 1 ) -FGC problem via a reduction to the minimum-cost rooted 2-arborescence problem. This improves on the 2.527-approximation algorithm of Adjiashvili et al. Our 2-approximation algorithm for the ( 1 , 1 ) -FGC problem extends to a ( k + 1 ) -approximation algorithm for the ( 1 , k ) -FGC problem. We present a 4-approximation algorithm for the ( k , 1 ) -FGC problem, and an O ( q log | V | ) -approximation algorithm for the ( p , q ) -FGC problem. Finally, we improve on the result of Adjiashvili et al. for the unweighted  ( 1 , 1 ) -FGC problem by presenting a 16/11-approximation algorithm. The ( p , q ) -FGC problem is related to the well-known Capacitated k - Connected Subgraph problem (denoted Cap- k -ECSS ) that arises in the area of Capacitated Network Design. We give a min ( k , 2 u max ) -approximation algorithm for the Cap- k -ECSS problem, where u max denotes the maximum capacity of an edge.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-023-01961-5