Channel Decoding for Nonbinary Physical-Layer Network Coding in Two-Way Relay Systems
In this paper, we propose a generalized channel decoding scheme for nonbinary physical-layer network coding (CD-NC) in two-way relay channels (TWRCs), where two source nodes A and B exchange their nonbinary symbols via a relay. The two sources use the same nonbinary low-density parity-check (LDPC) c...
Saved in:
| Published in: | IEEE transactions on vehicular technology Vol. 68; no. 1; pp. 628 - 640 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9545, 1939-9359 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we propose a generalized channel decoding scheme for nonbinary physical-layer network coding (CD-NC) in two-way relay channels (TWRCs), where two source nodes A and B exchange their nonbinary symbols via a relay. The two sources use the same nonbinary low-density parity-check (LDPC) channel code over the integer ring <inline-formula><tex-math notation="LaTeX">\mathbb {Z}_M</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">M</tex-math></inline-formula>-pulse-amplitude modulation, respectively. The existing channel decoding schemes for nonbinary network coding suffer severe rate loss compared with the cut-set bound of TWRC, especially in the low-to-medium signal-to-noise ratio regime. The proposed CD-NC can decrease the rate loss. Our contributions are as follows: 1) We develop a generalized nonbinary sum product algorithm (G-SPA) for CD-NC according to the principle of virtual encoding of the superimposed symbols. Simulation results show that our CD-NC can achieve significant performance gains over the conventional nonbinary network coding for both additive white Gaussian noise and fading channels; and 2) We exploit two-dimensional fast-Fourier-transform-based belief propagation (2-D-FFT-BP) and extended min-sum (EMS) decoding algorithms to reduce the decoding complexity of G-SPA. Simulation results show that the 2-D-FFT-BP has the same performance as G-SPA, while EMS can greatly reduce the decoding complexity of G-SPA at the cost of slight performance degradation. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9545 1939-9359 |
| DOI: | 10.1109/TVT.2018.2883509 |