Hyers–Ulam Stability of Linear Homogeneous Quaternion-Valued Difference Equations
In this paper, we consider the Hyers–Ulam stability of the first-order linear homogeneous quaternion matrix difference equation. Furthermore, we prove the Hyers-Ulam stability of the second-order linear homogeneous quaternion-valued forward and backward difference equation by converting them into th...
Uložené v:
| Vydané v: | Qualitative theory of dynamical systems Ročník 22; číslo 3 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.09.2023
|
| Predmet: | |
| ISSN: | 1575-5460, 1662-3592 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we consider the Hyers–Ulam stability of the first-order linear homogeneous quaternion matrix difference equation. Furthermore, we prove the Hyers-Ulam stability of the second-order linear homogeneous quaternion-valued forward and backward difference equation by converting them into the first-order quaternion matrix difference equation. Finally, some examples are given to support the theoretical results. |
|---|---|
| ISSN: | 1575-5460 1662-3592 |
| DOI: | 10.1007/s12346-023-00818-8 |