A Fast Distributed Asynchronous Newton-Based Optimization Algorithm

One of the most important problems in the field of distributed optimization is the problem of minimizing a sum of local convex objective functions over a networked system. Most of the existing work in this area focuses on developing distributed algorithms in a synchronous setting under the presence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 65; H. 7; S. 2769 - 2784
Hauptverfasser: Mansoori, Fatemeh, Wei, Ermin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9286, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the most important problems in the field of distributed optimization is the problem of minimizing a sum of local convex objective functions over a networked system. Most of the existing work in this area focuses on developing distributed algorithms in a synchronous setting under the presence of a central clock, where the agents need to wait for the slowest one to finish the update, before proceeding to the next iterate. Asynchronous distributed algorithms remove the need for a central coordinator, reduce the synchronization wait, and allow some agents to compute faster and execute more iterations. In the asynchronous setting, the only known algorithms for solving this problem could achieve an either linear or sublinear rate of convergence. In this paper, we build upon the existing literature to develop and analyze an asynchronous Newton-based method to solve a penalized version of the problem. We show that this algorithm guarantees almost sure convergence with a global linear and local quadratic rate in expectation. Numerical studies confirm the superior performance of our algorithm against other asynchronous methods.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2019.2933607