MOD-RRT: A Sampling-Based Algorithm for Robot Path Planning in Dynamic Environment
This article presents an algorithm termed as multiobjective dynamic rapidly exploring random (MOD-RRT*), which is suitable for robot navigation in unknown dynamic environment. The algorithm is composed of a path generation procedure and a path replanning one. First, a modified RRT* is utilized to ob...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial electronics (1982) Ročník 68; číslo 8; s. 7244 - 7251 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0278-0046, 1557-9948 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This article presents an algorithm termed as multiobjective dynamic rapidly exploring random (MOD-RRT*), which is suitable for robot navigation in unknown dynamic environment. The algorithm is composed of a path generation procedure and a path replanning one. First, a modified RRT* is utilized to obtain an initial path, as well as generate a state tree structure as prior knowledge. Then, a shortcuting method is given to optimize the initial path. On this basis, another method is designed to replan the path if the current path is infeasible. The suggested approach can choose the best node among several candidates within a short time, where both path length and path smoothness are considered. Comparing with other static planning algorithms, the MOD-RRT* can generate a higher quality initial path. Simulations on the dynamic environment are conducted to clarify the efficient performance of our algorithm in avoiding unknown obstacles. Furthermore, real applicative experiment further proves the effectiveness of our approach in practical applications. |
|---|---|
| AbstractList | This article presents an algorithm termed as multiobjective dynamic rapidly exploring random (MOD-RRT*), which is suitable for robot navigation in unknown dynamic environment. The algorithm is composed of a path generation procedure and a path replanning one. First, a modified RRT* is utilized to obtain an initial path, as well as generate a state tree structure as prior knowledge. Then, a shortcuting method is given to optimize the initial path. On this basis, another method is designed to replan the path if the current path is infeasible. The suggested approach can choose the best node among several candidates within a short time, where both path length and path smoothness are considered. Comparing with other static planning algorithms, the MOD-RRT* can generate a higher quality initial path. Simulations on the dynamic environment are conducted to clarify the efficient performance of our algorithm in avoiding unknown obstacles. Furthermore, real applicative experiment further proves the effectiveness of our approach in practical applications. |
| Author | Sun, Haixin Qi, Jie Yang, Hui |
| Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0001-5376-1514 surname: Qi fullname: Qi, Jie email: qijie@xmu.edu.cn organization: College of Electronic Science and Technology, Xiamen University, Xiamen, China – sequence: 2 givenname: Hui orcidid: 0000-0002-8635-6707 surname: Yang fullname: Yang, Hui email: hyang@stu.xmu.edu.cn organization: College of Electronic Science and Technology, Xiamen University, Xiamen, China – sequence: 3 givenname: Haixin orcidid: 0000-0001-8249-1197 surname: Sun fullname: Sun, Haixin email: hxsun@xmu.edu.cn organization: School of Informatics, Xiamen University, Xiamen, China |
| BookMark | eNp9kMFPwjAUhxuDiYDeTbw08TxsS7uu3hBQSTCQieem2zoo2VrsCgn_vSMQDx68vHd4v-_9kq8HOtZZDcA9RgOMkXhazaYDgggaECESTtEV6GLGeCQETTqgiwhPIoRofAN6TbNFCFOGWRekH4tJlKarZziCn6reVcauoxfV6AKOqrXzJmxqWDoPU5e5AJcqbOCyUta2OWgsnBytqk0Op_ZgvLO1tuEWXJeqavTdZffB1-t0NX6P5ou32Xg0j3IicIgYprFqRyKwSoo4V5jFmWBiSDNeFgXKtaackpxxKkRcaFJSzXjJaNEeslIM--Dx_Hfn3fdeN0Fu3d7btlISRgjBlHLeptA5lXvXNF6XcudNrfxRYiRP5mRrTp7MyYu5Fon_ILkJKhhng1em-g98OINGa_3bIzBmJEmGP6p7ezw |
| CODEN | ITIED6 |
| CitedBy_id | crossref_primary_10_3390_pr12050984 crossref_primary_10_1016_j_robot_2024_104656 crossref_primary_10_1109_TIE_2021_3075852 crossref_primary_10_1002_tee_23898 crossref_primary_10_1109_JOE_2023_3258068 crossref_primary_10_32604_cmc_2024_055883 crossref_primary_10_1016_j_oceaneng_2022_112873 crossref_primary_10_1109_ACCESS_2021_3123622 crossref_primary_10_1109_ACCESS_2025_3600708 crossref_primary_10_1109_TASE_2024_3359641 crossref_primary_10_3390_s23010517 crossref_primary_10_1007_s11431_023_2605_7 crossref_primary_10_1109_TIV_2024_3393068 crossref_primary_10_1109_TVT_2023_3270174 crossref_primary_10_1016_j_eswa_2024_123571 crossref_primary_10_1109_ACCESS_2021_3062557 crossref_primary_10_1109_TAES_2022_3198925 crossref_primary_10_3390_drones8050171 crossref_primary_10_1109_TIE_2023_3306405 crossref_primary_10_1016_j_oceaneng_2025_121617 crossref_primary_10_3390_jmse13071318 crossref_primary_10_3390_robotics13030041 crossref_primary_10_3390_machines13060474 crossref_primary_10_1038_s41598_024_60327_9 crossref_primary_10_1109_TIE_2022_3203752 crossref_primary_10_1007_s11370_024_00566_x crossref_primary_10_1007_s10723_023_09734_2 crossref_primary_10_1109_TII_2024_3507955 crossref_primary_10_1177_02783649251324554 crossref_primary_10_1177_09544100221113198 crossref_primary_10_1016_j_engappai_2025_111846 crossref_primary_10_1017_S0263574725000098 crossref_primary_10_1007_s10846_023_01823_4 crossref_primary_10_1007_s11227_023_05858_0 crossref_primary_10_1007_s11432_022_3904_9 crossref_primary_10_1109_TII_2023_3348830 crossref_primary_10_3390_app14052032 crossref_primary_10_1016_j_robot_2024_104834 crossref_primary_10_3390_app15052287 crossref_primary_10_1007_s40313_024_01144_3 crossref_primary_10_1016_j_ijar_2022_11_013 crossref_primary_10_1007_s40747_021_00628_y crossref_primary_10_1016_j_oceaneng_2025_121767 crossref_primary_10_1109_JSEN_2025_3596346 crossref_primary_10_1016_j_autcon_2025_106334 crossref_primary_10_3390_pr11123302 crossref_primary_10_1177_09544062241305524 crossref_primary_10_1109_ACCESS_2024_3355275 crossref_primary_10_1109_TCYB_2024_3486004 crossref_primary_10_1109_TASE_2025_3590419 crossref_primary_10_1016_j_robot_2025_105086 crossref_primary_10_3233_JIFS_239043 crossref_primary_10_1142_S2301385025500414 crossref_primary_10_1177_09544062241228391 crossref_primary_10_1109_ACCESS_2025_3536081 crossref_primary_10_1016_j_oceaneng_2025_120701 crossref_primary_10_1109_ACCESS_2025_3544546 crossref_primary_10_1109_OJVT_2025_3540174 crossref_primary_10_1016_j_jocs_2024_102239 crossref_primary_10_1088_2631_8695_adfa5b crossref_primary_10_3390_math10152555 crossref_primary_10_1007_s12239_024_00188_3 crossref_primary_10_1080_17445302_2025_2547798 crossref_primary_10_1109_TIE_2022_3177801 crossref_primary_10_1109_LRA_2023_3315210 crossref_primary_10_1109_TTE_2022_3142150 crossref_primary_10_3390_sym14050856 crossref_primary_10_1016_j_measurement_2024_116065 crossref_primary_10_3390_act10120314 crossref_primary_10_1016_j_asoc_2023_110868 crossref_primary_10_3390_app131910614 crossref_primary_10_3390_electronics12112456 crossref_primary_10_1007_s10489_022_04137_4 crossref_primary_10_1177_09596518221122721 crossref_primary_10_1016_j_cie_2023_109767 crossref_primary_10_1145_3737280 crossref_primary_10_3390_app15031165 crossref_primary_10_1142_S1793962325410132 crossref_primary_10_1177_02783649241245729 crossref_primary_10_3390_s23021041 crossref_primary_10_1109_TSMC_2025_3539318 crossref_primary_10_1007_s40747_023_01111_6 crossref_primary_10_1007_s40747_023_01115_2 crossref_primary_10_1088_1402_4896_ad9cd3 crossref_primary_10_1109_TII_2021_3125447 crossref_primary_10_1155_2024_1592587 crossref_primary_10_1038_s41598_025_00694_z crossref_primary_10_1109_OJVT_2024_3402129 crossref_primary_10_1109_TIE_2023_3250847 crossref_primary_10_1088_1742_6596_2926_1_012003 crossref_primary_10_3390_electronics11091459 crossref_primary_10_1016_j_eswa_2024_126123 crossref_primary_10_1109_TRO_2024_3422052 crossref_primary_10_1016_j_jocs_2022_101937 crossref_primary_10_3390_en16196910 crossref_primary_10_1016_j_measurement_2025_118633 crossref_primary_10_1109_TIM_2025_3574901 crossref_primary_10_3390_electronics11213628 crossref_primary_10_1016_j_compind_2025_104287 crossref_primary_10_1016_j_asoc_2025_113488 crossref_primary_10_3390_rs17152704 crossref_primary_10_1109_TIV_2023_3320401 crossref_primary_10_1109_JSEN_2021_3130282 crossref_primary_10_1016_j_engappai_2025_110393 crossref_primary_10_1177_09544070251368436 crossref_primary_10_3390_act12040166 crossref_primary_10_1109_TAES_2023_3268023 crossref_primary_10_1080_0305215X_2022_2104840 crossref_primary_10_3390_drones9070476 crossref_primary_10_3390_s22207968 crossref_primary_10_3390_drones9010039 crossref_primary_10_1007_s42524_025_4099_x crossref_primary_10_1049_sil2_12056 crossref_primary_10_1051_jnwpu_20244250929 crossref_primary_10_3390_biomimetics9120744 crossref_primary_10_1007_s00542_022_05322_8 crossref_primary_10_3390_machines10010050 crossref_primary_10_1088_1361_6501_ad8177 crossref_primary_10_3390_app14072765 crossref_primary_10_1016_j_autcon_2024_105523 crossref_primary_10_1108_RIA_10_2024_0211 crossref_primary_10_3390_app13095234 crossref_primary_10_1038_s41598_025_93571_8 crossref_primary_10_1109_TIE_2022_3148753 crossref_primary_10_3390_agriculture14081206 crossref_primary_10_1016_j_cor_2025_106993 crossref_primary_10_1109_TVT_2023_3253212 crossref_primary_10_1109_ACCESS_2022_3226465 crossref_primary_10_1007_s12206_025_0738_8 crossref_primary_10_3390_s22239203 crossref_primary_10_1016_j_isatra_2025_07_020 crossref_primary_10_1016_j_sysconle_2024_105949 crossref_primary_10_1017_S0263574725000281 crossref_primary_10_1109_JIOT_2024_3523586 crossref_primary_10_3390_sym14091843 crossref_primary_10_1371_journal_pone_0302026 crossref_primary_10_1016_j_asej_2025_103526 crossref_primary_10_1016_j_oceaneng_2023_116227 crossref_primary_10_3390_drones7040257 crossref_primary_10_1080_09540091_2023_2168253 crossref_primary_10_1007_s41315_023_00316_9 crossref_primary_10_1109_TNNLS_2023_3332172 crossref_primary_10_1049_tje2_70058 crossref_primary_10_1108_IR_04_2022_0102 crossref_primary_10_1016_j_engappai_2024_108362 crossref_primary_10_1007_s10489_024_06124_3 crossref_primary_10_3390_agriculture12050581 crossref_primary_10_3390_sym17010001 crossref_primary_10_1016_j_geits_2022_100026 crossref_primary_10_1007_s11804_024_00430_5 crossref_primary_10_1109_TIM_2025_3547534 crossref_primary_10_1016_j_eswa_2023_120254 crossref_primary_10_1016_j_jksuci_2023_101650 crossref_primary_10_1016_j_heliyon_2024_e32451 crossref_primary_10_3390_rs16162938 crossref_primary_10_1088_1742_6596_2216_1_012020 crossref_primary_10_1177_09544070251317748 crossref_primary_10_1017_S0263574724001930 crossref_primary_10_1016_j_oceaneng_2024_119906 |
| Cites_doi | 10.1109/CISDA.2013.6595428 10.1016/j.asoc.2017.10.025 10.1177/0278364911406761 10.1177/0278364912461059 10.1109/TCYB.2015.2399616 10.1109/TIE.2018.2816000 10.1109/TRO.2016.2539377 10.1016/j.eswa.2016.10.045 10.1109/70.508439 10.1016/j.neucom.2017.12.015 10.1109/CONTROLO.2018.8514261 10.1109/TIE.2011.2109332 10.1016/j.sysconle.2014.12.007 10.1109/ICRA.2013.6631297 10.1109/TSMCB.2011.2157493 10.1108/eb024706 10.1016/j.neucom.2012.09.019 10.1016/j.mechmachtheory.2018.04.026 10.1109/ICRA.2015.7140096 10.1016/S1665-6423(14)71610-4 10.1109/TIE.2014.2360077 10.1109/TIE.2014.2345351 10.1109/TMECH.2018.2821767 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2020.2998740 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 7251 |
| ExternalDocumentID | 10_1109_TIE_2020_2998740 9115288 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2018YFC0809200 – fundername: National Natural Science Foundation of China grantid: 61671394; 61971362 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c291t-5146a514891a8d6ca156b95934b7fdd0cee4742c574996de2f4e57f54dee4bf93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 207 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647484000079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0046 |
| IngestDate | Mon Jun 30 10:17:45 EDT 2025 Sat Nov 29 01:31:48 EST 2025 Tue Nov 18 22:24:00 EST 2025 Wed Aug 27 02:30:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-5146a514891a8d6ca156b95934b7fdd0cee4742c574996de2f4e57f54dee4bf93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5376-1514 0000-0002-8635-6707 0000-0001-8249-1197 |
| PQID | 2522214477 |
| PQPubID | 85464 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2522214477 ieee_primary_9115288 crossref_primary_10_1109_TIE_2020_2998740 crossref_citationtrail_10_1109_TIE_2020_2998740 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref11 ref10 e (ref14) 2015; 77 lavalle (ref5) 1998 ref2 ref1 ref17 ref19 shan (ref18) 0 lu (ref16) 2011; 41 ref24 ref23 ref26 ref25 ref22 kamil (ref21) 2015; 4 ref27 ref8 ref7 lin (ref20) 2015; 5 ref9 ref4 ref3 ref6 |
| References_xml | – ident: ref15 doi: 10.1109/CISDA.2013.6595428 – ident: ref3 doi: 10.1016/j.asoc.2017.10.025 – ident: ref7 doi: 10.1177/0278364911406761 – ident: ref8 doi: 10.1177/0278364912461059 – ident: ref24 doi: 10.1109/TCYB.2015.2399616 – ident: ref11 doi: 10.1109/TIE.2018.2816000 – ident: ref10 doi: 10.1109/TRO.2016.2539377 – ident: ref23 doi: 10.1016/j.eswa.2016.10.045 – volume: 5 start-page: 39 year: 2015 ident: ref20 article-title: 2D-span resampling of bi-RRT in dynamic path planning publication-title: Int J of Automation and Smart Technology – ident: ref6 doi: 10.1109/70.508439 – ident: ref4 doi: 10.1016/j.neucom.2017.12.015 – start-page: 16 year: 0 ident: ref18 article-title: A considering lane information and obstacle-avoidance motion planning approach publication-title: Proc IEEE Int Conf Intell Transp Syst – year: 1998 ident: ref5 article-title: Rapidly-exploring random trees: A new tool for path planning – ident: ref27 doi: 10.1109/CONTROLO.2018.8514261 – ident: ref1 doi: 10.1109/TIE.2011.2109332 – volume: 77 start-page: 1 year: 2015 ident: ref14 article-title: The obstacle avoidance motion planning problem for autonomous vehicles: A low-demanding receding horizon control scheme publication-title: Syst Control Lett doi: 10.1016/j.sysconle.2014.12.007 – ident: ref17 doi: 10.1109/ICRA.2013.6631297 – volume: 41 start-page: 1556 year: 2011 ident: ref16 article-title: Incremental multi-scale search algorithm for dynamic path planning with low worst-case complexity publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2011.2157493 – ident: ref26 doi: 10.1108/eb024706 – ident: ref25 doi: 10.1016/j.neucom.2012.09.019 – ident: ref2 doi: 10.1016/j.mechmachtheory.2018.04.026 – ident: ref9 doi: 10.1109/ICRA.2015.7140096 – ident: ref13 doi: 10.1016/S1665-6423(14)71610-4 – volume: 4 start-page: 134 year: 2015 ident: ref21 article-title: A review on motion planning and obstacle avoidance approaches in dynamic environments publication-title: Adv Autom Robot – ident: ref22 doi: 10.1109/TIE.2014.2360077 – ident: ref19 doi: 10.1109/TIE.2014.2345351 – ident: ref12 doi: 10.1109/TMECH.2018.2821767 |
| SSID | ssj0014515 |
| Score | 2.6831822 |
| Snippet | This article presents an algorithm termed as multiobjective dynamic rapidly exploring random (MOD-RRT*), which is suitable for robot navigation in unknown... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7244 |
| SubjectTerms | Algorithms Autonomous mobile robot Collision avoidance dynamic path planning Heuristic algorithms Mobile robots multiobjective planning Path planning Planning Probabilistic logic rapidly exploring random tree (RRT) Robots Smoothness |
| Title | MOD-RRT: A Sampling-Based Algorithm for Robot Path Planning in Dynamic Environment |
| URI | https://ieeexplore.ieee.org/document/9115288 https://www.proquest.com/docview/2522214477 |
| Volume | 68 |
| WOSCitedRecordID | wos000647484000079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60eNCDb7FaZQ9eBNemMcnuequ2RQ9qqRV6C9lHakETqdHf72xeKorgJQSyC2Enu_N9mccHcBQ5hgkeK8ojE1FPyJhyaTRlXuTLDlemE8tcbILd3vLJRAwX4KSuhTHG5Mln5tTe5rF8nao3-6usjRvTdzlfhEXGgqJWq44YeH6hVuDajrFI-qqQpCPa4-s-EkHXOcWj1yrQfXNBuabKj4M49y6Dtf-91zqsliiSdAuzb8CCSTZh5UtvwS0Y3dz16Gg0Piddch_ZvPFkSi_QZ2nSfZqm81n2-EwQsZJRKtOMDBEJkkrBiMwS0iuk6kn_sxJuGx4G_fHlFS0FFKhyRSejCIaCCC9cdCKuAxUhWZO2E7EnWay1gw7SQ2qsfIa8J9DGjT3js9j3ND6QsTjbgUaSJmYXSKDPEBsaobirPWtH7SOtji2a04gQZBPa1ZqGquwubkUunsKcZTgiRCuE1gphaYUmHNczXorOGn-M3bKrXo8rF7wJrcpsYbn1XkMXEaXtA8fY3u-z9mHZtYkpeRZfCxrZ_M0cwJJ6z2av88P8q_oAA5bI0g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQH7-K85sEXwbgupmvi29SJok6ZE3wrzaVzoK1s1d_vSdtNRRF8KYUmUHKanO_ruXwAe5FnAyliTUVkI8qliqlQ1tCAR76qC23rscrFJoJ2Wzw-yrsJOBjXwlhr8-Qze-hu81i-SfWb-1VWw43pMyEmYcrnnHlFtdY4ZsD9Qq-AuZ6xSPtGQUlP1rqXLaSCzDvEw9dp0H1zQrmqyo-jOPcv5wv_e7NFmC9xJGkWhl-CCZssw9yX7oIr0Lm5PaOdTveYNMl95DLHkx49Qa9lSPO5lw762dMLQcxKOqlKM3KHWJCMNIxIPyFnhVg9aX3Wwq3Cw3mre3pBSwkFqpmsZxThUCPCi5D1SJiGjpCuKdeLmKsgNsZDF8mRHGs_QObTMJbF3PpB7HODD1Qsj9agkqSJXQfSMEeIDq3UghnuLGl8JNaxw3MGMYKqQm20pqEu-4s7mYvnMOcZngzRCqGzQlhaoQr74xmvRW-NP8auuFUfjysXvApbI7OF5eYbhgwxpesEFwQbv8_ahZmL7s11eH3ZvtqEWebSVPKcvi2oZIM3uw3T-j3rDwc7-Rf2AaPOzBk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOD-RRT%3A+A+Sampling-Based+Algorithm+for+Robot+Path+Planning+in+Dynamic+Environment&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Qi%2C+Jie&rft.au=Yang%2C+Hui&rft.au=Sun%2C+Haixin&rft.date=2021-08-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=68&rft.issue=8&rft.spage=7244&rft.epage=7251&rft_id=info:doi/10.1109%2FTIE.2020.2998740&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2020_2998740 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |