Serrodyne Frequency Translation Using Time-Modulated Metasurfaces

Temporally modulated metamaterials have attracted significant attention recently due to their nonreciprocal and frequency converting properties. Here, a transparent, time-modulated metasurface, which functions as a serrodyne frequency translator, is reported at <inline-formula> <tex-math no...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation Vol. 68; no. 3; pp. 1599 - 1606
Main Authors: Wu, Zhanni, Grbic, Anthony
Format: Journal Article
Language:English
Published: New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-926X, 1558-2221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Temporally modulated metamaterials have attracted significant attention recently due to their nonreciprocal and frequency converting properties. Here, a transparent, time-modulated metasurface, which functions as a serrodyne frequency translator, is reported at <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-band frequencies. With a simple biasing architecture, the metasurface provides electrically tunable transmission phase that covers 360°. A sawtooth waveform is used to modulate the metasurface, allowing Doppler-like frequency translation. Modal analysis of an analogous time-modulated medium is performed to gain insight into the operation of the metasurface-based serrodyne frequency translator. Two such metasurfaces can be cascaded together to achieve magnetless devices that perform either phase or amplitude nonreciprocity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2019.2943712