PAPR Reduction of GFDM Signals Using Encoder-Decoder Neural Network (Autoencoder)
These days, one of the major downsides of Generalized Frequency Division Multiplexing (GFDM) systems is a high peak-to-average power ratio (PAPR). In this research, we present a novel deep learning autoencoder-based method to lower the PAPR of GFDM. The PAPR-reducing network (PRNet), also known as t...
Uloženo v:
| Vydáno v: | National Academy science letters Ročník 46; číslo 3; s. 213 - 217 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New Delhi
Springer India
01.06.2023
|
| Témata: | |
| ISSN: | 0250-541X, 2250-1754 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | These days, one of the major downsides of Generalized Frequency Division Multiplexing (GFDM) systems is a high peak-to-average power ratio (PAPR). In this research, we present a novel deep learning autoencoder-based method to lower the PAPR of GFDM. The PAPR-reducing network (PRNet), also known as the PAPR-reducing method, is based on the encoder-decoder neural network (Autoencoder). In the PAPR-reducing network (PRNet), the bit error rate (BER) and the PAPR of the GFDM system are jointly minimised by adaptively determining the constellation mapping and damping of symbols on each subcarrier and sub-symbol. |
|---|---|
| ISSN: | 0250-541X 2250-1754 |
| DOI: | 10.1007/s40009-023-01230-1 |