PAPR Reduction of GFDM Signals Using Encoder-Decoder Neural Network (Autoencoder)

These days, one of the major downsides of Generalized Frequency Division Multiplexing (GFDM) systems is a high peak-to-average power ratio (PAPR). In this research, we present a novel deep learning autoencoder-based method to lower the PAPR of GFDM. The PAPR-reducing network (PRNet), also known as t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:National Academy science letters Ročník 46; číslo 3; s. 213 - 217
Hlavní autoři: Chakravarty, Sumit, Kumar, Arun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New Delhi Springer India 01.06.2023
Témata:
ISSN:0250-541X, 2250-1754
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:These days, one of the major downsides of Generalized Frequency Division Multiplexing (GFDM) systems is a high peak-to-average power ratio (PAPR). In this research, we present a novel deep learning autoencoder-based method to lower the PAPR of GFDM. The PAPR-reducing network (PRNet), also known as the PAPR-reducing method, is based on the encoder-decoder neural network (Autoencoder). In the PAPR-reducing network (PRNet), the bit error rate (BER) and the PAPR of the GFDM system are jointly minimised by adaptively determining the constellation mapping and damping of symbols on each subcarrier and sub-symbol.
ISSN:0250-541X
2250-1754
DOI:10.1007/s40009-023-01230-1