Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing

Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to transfer a deep network trained by historical failure data for prediction of a new object is rarely researched. In this paper, a deep transfer l...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics Vol. 15; no. 4; pp. 2416 - 2425
Main Authors: Sun, Chuang, Ma, Meng, Zhao, Zhibin, Tian, Shaohua, Yan, Ruqiang, Chen, Xuefeng
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1551-3203, 1941-0050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to transfer a deep network trained by historical failure data for prediction of a new object is rarely researched. In this paper, a deep transfer learning (DTL) network based on sparse autoencoder (SAE) is presented. In the DTL method, three transfer strategies, that is, weight transfer, transfer learning of hidden feature, and weight update, are used to transfer an SAE trained by historical failure data to a new object. By these strategies, prediction of the new object without supervised information for training is achieved. Moreover, the learned features by deep transfer network for the new object share joint and similar characteristic to that of historical failure data, which is beneficial to accurate prediction. Case study on remaining useful life (RUL) prediction of cutting tool is performed to validate effectiveness of the DTL method. An SAE network is first trained by run-to-failure data with RUL information of a cutting tool in an off-line process. The trained network is then transferred to a new tool under operation for on-line RUL prediction. The prediction result with high accuracy shows advantage of the DTL method for RUL prediction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2018.2881543