Algorithm Parameters Selection Method With Deep Learning for EP MIMO Detector
Expectation Propagation (EP)-based Multiple-Input Multiple-Output (MIMO) detector achieves exceptional performance in high-dimensional systems with high-order modulations and flexible antenna configurations. However, based on our studies, the EP MIMO detector cannot achieve superior performance due...
Saved in:
| Published in: | IEEE transactions on vehicular technology Vol. 70; no. 10; pp. 10146 - 10156 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9545, 1939-9359 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Expectation Propagation (EP)-based Multiple-Input Multiple-Output (MIMO) detector achieves exceptional performance in high-dimensional systems with high-order modulations and flexible antenna configurations. However, based on our studies, the EP MIMO detector cannot achieve superior performance due to the empirical parameter selection, including initial variance and damping factors. According to the influence of the moment matching and parameter selection on the performance of the EP MIMO detector, we propose a modified EP MIMO detector (MEPD). To obtain the initial variance and damping factors which lead to better performance, we adopt a deep learning scheme, the iterative process of MEPD is unfolded to establish MEPNet for parameters training. The simulation results show that MEPD with off-line trained parameters outperforms the original one in various MIMO scenarios. Besides, the proposed MEPD with deep learning parameters selection is more robust than EPD in practical scenarios. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9545 1939-9359 |
| DOI: | 10.1109/TVT.2021.3103568 |