Peak-Graph-Based Fast Density Peak Clustering for Image Segmentation

Fuzzy c-means (FCM) algorithm as a traditional clustering algorithm for image segmentation cannot effectively preserve local spatial information of pixels, which leads to poor segmentation results with inconsistent regions. For the remedy, superpixel technologies are applied, but spatial information...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters Vol. 28; pp. 897 - 901
Main Authors: Guan, Junyi, Li, Sheng, He, Xiongxiong, Chen, Jiajia
Format: Journal Article
Language:English
Published: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1070-9908, 1558-2361
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fuzzy c-means (FCM) algorithm as a traditional clustering algorithm for image segmentation cannot effectively preserve local spatial information of pixels, which leads to poor segmentation results with inconsistent regions. For the remedy, superpixel technologies are applied, but spatial information preservation highly relies on the quality of superpixels. Density peak clustering algorithm (DPC) can reconstruct spatial information of arbitrary-shaped clusters, but its high time complexity <inline-formula><tex-math notation="LaTeX">O(n^2)</tex-math></inline-formula> and unrobust allocation strategy decrease its applicability for image segmentation. Herein, a fast density peak clustering method (PGDPC) based on the kNN distance matrix of data with time complexity <inline-formula><tex-math notation="LaTeX">O(nlog(n))</tex-math></inline-formula> is proposed. By using the peak-graph-based allocation strategy, PGDPC is more robust in the reconstruction of spatial information of various complex-shaped clusters, so it can rapidly and accurately segment images into high-consistent segmentation regions. Experiments on synthetic datasets, real and Wireless Capsule Endoscopy (WCE) images demonstrate that PGDPC as a fast and robust clustering algorithm is applicable to image segmentation.
AbstractList Fuzzy c-means (FCM) algorithm as a traditional clustering algorithm for image segmentation cannot effectively preserve local spatial information of pixels, which leads to poor segmentation results with inconsistent regions. For the remedy, superpixel technologies are applied, but spatial information preservation highly relies on the quality of superpixels. Density peak clustering algorithm (DPC) can reconstruct spatial information of arbitrary-shaped clusters, but its high time complexity [Formula Omitted] and unrobust allocation strategy decrease its applicability for image segmentation. Herein, a fast density peak clustering method (PGDPC) based on the kNN distance matrix of data with time complexity [Formula Omitted] is proposed. By using the peak-graph-based allocation strategy, PGDPC is more robust in the reconstruction of spatial information of various complex-shaped clusters, so it can rapidly and accurately segment images into high-consistent segmentation regions. Experiments on synthetic datasets, real and Wireless Capsule Endoscopy (WCE) images demonstrate that PGDPC as a fast and robust clustering algorithm is applicable to image segmentation.
Fuzzy c-means (FCM) algorithm as a traditional clustering algorithm for image segmentation cannot effectively preserve local spatial information of pixels, which leads to poor segmentation results with inconsistent regions. For the remedy, superpixel technologies are applied, but spatial information preservation highly relies on the quality of superpixels. Density peak clustering algorithm (DPC) can reconstruct spatial information of arbitrary-shaped clusters, but its high time complexity <inline-formula><tex-math notation="LaTeX">O(n^2)</tex-math></inline-formula> and unrobust allocation strategy decrease its applicability for image segmentation. Herein, a fast density peak clustering method (PGDPC) based on the kNN distance matrix of data with time complexity <inline-formula><tex-math notation="LaTeX">O(nlog(n))</tex-math></inline-formula> is proposed. By using the peak-graph-based allocation strategy, PGDPC is more robust in the reconstruction of spatial information of various complex-shaped clusters, so it can rapidly and accurately segment images into high-consistent segmentation regions. Experiments on synthetic datasets, real and Wireless Capsule Endoscopy (WCE) images demonstrate that PGDPC as a fast and robust clustering algorithm is applicable to image segmentation.
Author Guan, Junyi
He, Xiongxiong
Li, Sheng
Chen, Jiajia
Author_xml – sequence: 1
  givenname: Junyi
  orcidid: 0000-0002-6670-4030
  surname: Guan
  fullname: Guan, Junyi
  email: jonnyguan73@ 163.com
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Sheng
  orcidid: 0000-0003-2144-958X
  surname: Li
  fullname: Li, Sheng
  email: shengli@zjut.edu.cn
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 3
  givenname: Xiongxiong
  orcidid: 0000-0002-5806-1047
  surname: He
  fullname: He, Xiongxiong
  email: hxx@zjut.edu.cn
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 4
  givenname: Jiajia
  surname: Chen
  fullname: Chen, Jiajia
  email: fl_katrina@163.com
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
BookMark eNp9kEFPAjEQhRuDiYjeTbxs4nlx2u6W9qggSEIiCXretN0pLsIutuXAv3fJEg8ePM0k772ZvO-a9OqmRkLuKAwpBfW4WC2HDBgdchixkcouSJ_muUwZF7TX7jCCVCmQV-Q6hA0ASCrzPpksUX-lM6_3n-mzDlgmUx1iMsE6VPGYnNRkvD2EiL6q14lrfDLf6TUmK1zvsI46Vk19Qy6d3ga8Pc8B-Zi-vI9f08XbbD5-WqSWKRrTzCBQYUbWCGGEo9LKTBtZGg4uRxAyK22rUWfQWc5Kq2he5ow5SqU0GfABeeju7n3zfcAQi01z8HX7smA5kyrjbavWBZ3L-iYEj67Y-2qn_bGgUJxYFS2r4sSqOLNqI-JPxFZdteh1tf0veN8FK0T8_aMyEJzn_AeceneT
CODEN ISPLEM
CitedBy_id crossref_primary_10_1016_j_ins_2023_119788
crossref_primary_10_1016_j_knosys_2022_108513
crossref_primary_10_3389_fpls_2022_955256
crossref_primary_10_3390_fire6110441
crossref_primary_10_1109_JBHI_2024_3460761
crossref_primary_10_1016_j_neucom_2024_128767
crossref_primary_10_1016_j_engappai_2025_111659
crossref_primary_10_1109_TSMC_2024_3388475
crossref_primary_10_1016_j_asoc_2025_113926
crossref_primary_10_3390_app13031281
crossref_primary_10_1109_TKDE_2023_3266451
crossref_primary_10_1016_j_neucom_2024_129060
crossref_primary_10_1109_LSP_2024_3393349
crossref_primary_10_1007_s10044_023_01195_3
crossref_primary_10_1109_TNNLS_2023_3329720
crossref_primary_10_3390_app15073612
crossref_primary_10_3390_s22197600
crossref_primary_10_3390_pr11072036
crossref_primary_10_1016_j_asoc_2024_111773
crossref_primary_10_1016_j_ins_2022_10_041
crossref_primary_10_32604_cmc_2024_046314
crossref_primary_10_1109_TGRS_2024_3385202
crossref_primary_10_1145_3652509
crossref_primary_10_1016_j_ins_2023_01_144
crossref_primary_10_1016_j_asoc_2024_111419
crossref_primary_10_3390_biomimetics9010003
Cites_doi 10.1109/ICIP.2018.8451300
10.1145/1217299.1217303
10.1109/34.1000236
10.1007/s13042-017-0648-x
10.1109/TPAMI.2010.161
10.1016/j.patcog.2016.11.015
10.1109/CVPR.2019.00075
10.1126/science.1242072
10.1007/11590316_1
10.1016/j.patcog.2005.09.012
10.1109/TFUZZ.2019.2930030
10.1145/355744.355745
10.1016/j.knosys.2019.06.032
10.1109/TIP.2015.2397313
10.1109/CVPR.2017.520
10.1145/1143844.1143857
10.1023/A:1009783824328
10.1109/TIP.2018.2836300
10.1109/TPAMI.2012.120
10.1016/j.knosys.2017.07.010
10.1145/3083187.3083212
10.1109/TII.2016.2628747
10.1109/TIP.2010.2040763
10.1109/BigComp.2018.00084
10.1016/j.patcog.2006.07.011
10.1109/EMBC.2018.8512197
10.1016/0098-3004(84)90020-7
10.1109/CVPR.2017.305
10.1016/j.ins.2016.03.011
10.1109/ISBI.2017.7950496
10.1007/978-3-030-59725-2_26
10.1016/j.eswa.2019.01.055
10.1016/j.eswa.2018.07.075
10.1109/ACCESS.2019.2891970
10.1126/sciadv.aax3770
10.1016/j.patcog.2017.06.023
10.1109/TFUZZ.2018.2889018
10.1016/j.neucom.2018.07.043
10.1016/j.patcog.2020.107554
10.1016/j.ins.2018.03.031
10.1007/BF01386390
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2021.3072794
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 901
ExternalDocumentID 10_1109_LSP_2021_3072794
9406335
Genre orig-research
GrantInformation_xml – fundername: Key R&D Program Projects in Zhejiang Province
  grantid: 2020C03074
– fundername: National Science Foundation of P.R. China
  grantid: 61873239
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-4be016b7cb66b6f18c84ab8db30f5e0684dccb61fbefc32dc915d522f1188b403
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652045900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Mon Jun 30 10:15:34 EDT 2025
Sat Nov 29 03:38:52 EST 2025
Tue Nov 18 22:30:59 EST 2025
Wed Aug 27 02:30:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-4be016b7cb66b6f18c84ab8db30f5e0684dccb61fbefc32dc915d522f1188b403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6670-4030
0000-0003-2144-958X
0000-0002-5806-1047
PQID 2528943081
PQPubID 75747
PageCount 5
ParticipantIDs crossref_primary_10_1109_LSP_2021_3072794
ieee_primary_9406335
proquest_journals_2528943081
crossref_citationtrail_10_1109_LSP_2021_3072794
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref31
ref30
ref33
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref18
liang (ref14) 2017; 71
ronneberger (ref5) 0
ref24
ref23
ref26
ref25
ref20
ref42
liu (ref19) 2017; 133
ref41
ref22
ref44
ref21
ref43
ref28
ref27
zelnikmanor (ref40) 0
ref29
ref8
ref7
ref9
ref4
ref3
ref6
macqueen (ref11) 1967; 1
References_xml – ident: ref30
  doi: 10.1109/ICIP.2018.8451300
– ident: ref41
  doi: 10.1145/1217299.1217303
– ident: ref25
  doi: 10.1109/34.1000236
– start-page: 1601
  year: 0
  ident: ref40
  article-title: Self-tuning spectral clustering
  publication-title: Proc Neural Inf Process Syst
– ident: ref23
  doi: 10.1007/s13042-017-0648-x
– ident: ref28
  doi: 10.1109/TPAMI.2010.161
– ident: ref4
  doi: 10.1016/j.patcog.2016.11.015
– ident: ref35
  doi: 10.1109/CVPR.2019.00075
– ident: ref12
  doi: 10.1126/science.1242072
– ident: ref39
  doi: 10.1007/11590316_1
– ident: ref27
  doi: 10.1016/j.patcog.2005.09.012
– ident: ref10
  doi: 10.1109/TFUZZ.2019.2930030
– ident: ref38
  doi: 10.1145/355744.355745
– start-page: 234
  year: 0
  ident: ref5
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput Assist Interv
– ident: ref16
  doi: 10.1016/j.knosys.2019.06.032
– ident: ref34
  doi: 10.1109/TIP.2015.2397313
– ident: ref43
  doi: 10.1109/CVPR.2017.520
– ident: ref37
  doi: 10.1145/1143844.1143857
– ident: ref42
  doi: 10.1023/A:1009783824328
– ident: ref44
  doi: 10.1109/TIP.2018.2836300
– ident: ref36
  doi: 10.1109/TPAMI.2012.120
– volume: 133
  start-page: 208
  year: 2017
  ident: ref19
  article-title: Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy
  publication-title: Knowl -Based Syst
  doi: 10.1016/j.knosys.2017.07.010
– ident: ref33
  doi: 10.1145/3083187.3083212
– ident: ref13
  doi: 10.1109/TII.2016.2628747
– ident: ref7
  doi: 10.1109/TIP.2010.2040763
– ident: ref15
  doi: 10.1109/BigComp.2018.00084
– volume: 1
  start-page: 281
  year: 1967
  ident: ref11
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc 5th Berkeley Symp Math Statist Probability
– ident: ref8
  doi: 10.1016/j.patcog.2006.07.011
– ident: ref31
  doi: 10.1109/EMBC.2018.8512197
– ident: ref6
  doi: 10.1016/0098-3004(84)90020-7
– ident: ref3
  doi: 10.1109/CVPR.2017.305
– ident: ref18
  doi: 10.1016/j.ins.2016.03.011
– ident: ref29
  doi: 10.1109/ISBI.2017.7950496
– ident: ref32
  doi: 10.1007/978-3-030-59725-2_26
– ident: ref2
  doi: 10.1016/j.eswa.2019.01.055
– ident: ref24
  doi: 10.1016/j.eswa.2018.07.075
– ident: ref1
  doi: 10.1109/ACCESS.2019.2891970
– ident: ref22
  doi: 10.1126/sciadv.aax3770
– volume: 71
  start-page: 375
  year: 2017
  ident: ref14
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.06.023
– ident: ref9
  doi: 10.1109/TFUZZ.2018.2889018
– ident: ref20
  doi: 10.1016/j.neucom.2018.07.043
– ident: ref21
  doi: 10.1016/j.patcog.2020.107554
– ident: ref17
  doi: 10.1016/j.ins.2018.03.031
– ident: ref26
  doi: 10.1007/BF01386390
SSID ssj0008185
Score 2.4703395
Snippet Fuzzy c-means (FCM) algorithm as a traditional clustering algorithm for image segmentation cannot effectively preserve local spatial information of pixels,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 897
SubjectTerms Algorithms
Clustering
Clustering algorithms
Clustering methods
Complexity
Density
density peak clustering
Image reconstruction
Image segmentation
kNN
peak-graph
Resource management
Robustness
Signal processing algorithms
Spatial data
Vegetation
Title Peak-Graph-Based Fast Density Peak Clustering for Image Segmentation
URI https://ieeexplore.ieee.org/document/9406335
https://www.proquest.com/docview/2528943081
Volume 28
WOSCitedRecordID wos000652045900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAH32K1Sg5eBNNu9pXsUatVQUTwQW-LeYnYbqXdCv57J7vbRVEEbwuZhGVmMo9k5gvAoQxRjdBtUBX4iobcxlTYSFDFrcellRErqi0er_nNjRgMktsGHNe9MMaYovjMdNxncZevx2rmjsq6CXqfIIgWYIHzuOzVqq2uczxlfaFH0cKK-ZWkl3Sv724xEfRZB_XZ50n4zQUVb6r8MMSFd-mv_u-_1mCliiLJSSn2dWiYbAOWv2ALbsIZGrtXeuHwqOkpuipN-k_TnJy5gvX8g7hR0hvOHE4C0hOMXcnVCI0LuTPPo6ohKduCh_75fe-SVk8mUOUnLKehNBjDSa5kHMvYMqFE-CSFloFnI-PFItQKx5iVxqJ0tEpYpDEEs5hnCBl6wTY0s3FmdoBIX3NfOfQdHoQaBWeYTnCtODCBkpq1oDvnYqoqPHH3rMUwLfIKL0mR76nje1rxvQVH9Yy3EkvjD9pNx-earmJxC9pzQaXVZpumfuQXKPKC7f4-aw-W3NrlyUkbmvlkZvZhUb3nL9PJQaFHnyeWxB0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB68QH3wFtczD74Ixm3StE0fvdZdXBfBA9-KuUR0V3G7gv_eSdtdFEXwrZCkLTOTOZKZbwB2lUAxQrNBdcg1FYmLqXSRpDpxQaKciliRbXHbTjodeXeXXo7B_qgWxlpbJJ_ZA_9Y3OWbFz3wR2X1FK1PGEbjMBkJwYOyWmukd73pKTMMA4o6Vg4vJYO03r66xFCQswOUaJ6k4psRKrqq_FDFhX1pzP_vzxZgrvIjyWHJ-EUYs70lmP2CLrgMJ6junuiZR6SmR2isDGnc93Ny4lPW8w_iR8nx88AjJeB8gt4raXVRvZAr-9CtSpJ6K3DTOL0-btKqaQLVPGU5FcqiF6cSreJYxY5JLcW9kkaFgYtsEEthNI4xp6xD_hidssigE-Yw0pBKBOEqTPReenYNiOIm4drj7yShMMg6y0yK74pDG2plWA3qQypmukIU940tnrMisgjSDOmeebpnFd1rsDda8Vqiafwxd9nTeTSvInENNoeMyqrt1s94xAscecnWf1-1A9PN64t21m51zjdgxn-nPEfZhIn8bWC3YEq_54_9t-1Cpj4Bh3zHZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peak-Graph-Based+Fast+Density+Peak+Clustering+for+Image+Segmentation&rft.jtitle=IEEE+signal+processing+letters&rft.au=Guan%2C+Junyi&rft.au=Li%2C+Sheng&rft.au=He%2C+Xiongxiong&rft.au=Chen%2C+Jiajia&rft.date=2021&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=28&rft.spage=897&rft.epage=901&rft_id=info:doi/10.1109%2FLSP.2021.3072794&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2021_3072794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon