Peak-Graph-Based Fast Density Peak Clustering for Image Segmentation

Fuzzy c-means (FCM) algorithm as a traditional clustering algorithm for image segmentation cannot effectively preserve local spatial information of pixels, which leads to poor segmentation results with inconsistent regions. For the remedy, superpixel technologies are applied, but spatial information...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE signal processing letters Ročník 28; s. 897 - 901
Hlavní autoři: Guan, Junyi, Li, Sheng, He, Xiongxiong, Chen, Jiajia
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1070-9908, 1558-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Fuzzy c-means (FCM) algorithm as a traditional clustering algorithm for image segmentation cannot effectively preserve local spatial information of pixels, which leads to poor segmentation results with inconsistent regions. For the remedy, superpixel technologies are applied, but spatial information preservation highly relies on the quality of superpixels. Density peak clustering algorithm (DPC) can reconstruct spatial information of arbitrary-shaped clusters, but its high time complexity <inline-formula><tex-math notation="LaTeX">O(n^2)</tex-math></inline-formula> and unrobust allocation strategy decrease its applicability for image segmentation. Herein, a fast density peak clustering method (PGDPC) based on the kNN distance matrix of data with time complexity <inline-formula><tex-math notation="LaTeX">O(nlog(n))</tex-math></inline-formula> is proposed. By using the peak-graph-based allocation strategy, PGDPC is more robust in the reconstruction of spatial information of various complex-shaped clusters, so it can rapidly and accurately segment images into high-consistent segmentation regions. Experiments on synthetic datasets, real and Wireless Capsule Endoscopy (WCE) images demonstrate that PGDPC as a fast and robust clustering algorithm is applicable to image segmentation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2021.3072794