Disagreement-Based Active Learning in Online Settings
We study online active learning for classifying streaming instances within the framework of statistical learning theory. At each time, the learner either queries the label of the current instance or predicts the label based on past seen examples. The objective is to minimize the number of queries wh...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 70; s. 1947 - 1958 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We study online active learning for classifying streaming instances within the framework of statistical learning theory. At each time, the learner either queries the label of the current instance or predicts the label based on past seen examples. The objective is to minimize the number of queries while constraining the number of prediction errors over a horizon of length <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>. We develop a disagreement-based online learning algorithm for a general hypothesis space and under the Tsybakov noise and establish its label complexity under a constraint of bounded regret in terms of classification errors. We further establish a matching (up to a poly-logarithmic factor) lower bound, demonstrating the order optimality of the proposed algorithm. We address the tradeoff between label complexity and regret and show that the algorithm can be modified to operate at a different point on the tradeoff curve. |
|---|---|
| AbstractList | We study online active learning for classifying streaming instances within the framework of statistical learning theory. At each time, the learner either queries the label of the current instance or predicts the label based on past seen examples. The objective is to minimize the number of queries while constraining the number of prediction errors over a horizon of length [Formula Omitted]. We develop a disagreement-based online learning algorithm for a general hypothesis space and under the Tsybakov noise and establish its label complexity under a constraint of bounded regret in terms of classification errors. We further establish a matching (up to a poly-logarithmic factor) lower bound, demonstrating the order optimality of the proposed algorithm. We address the tradeoff between label complexity and regret and show that the algorithm can be modified to operate at a different point on the tradeoff curve. We study online active learning for classifying streaming instances within the framework of statistical learning theory. At each time, the learner either queries the label of the current instance or predicts the label based on past seen examples. The objective is to minimize the number of queries while constraining the number of prediction errors over a horizon of length <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>. We develop a disagreement-based online learning algorithm for a general hypothesis space and under the Tsybakov noise and establish its label complexity under a constraint of bounded regret in terms of classification errors. We further establish a matching (up to a poly-logarithmic factor) lower bound, demonstrating the order optimality of the proposed algorithm. We address the tradeoff between label complexity and regret and show that the algorithm can be modified to operate at a different point on the tradeoff curve. |
| Author | Huang, Boshuang Salgia, Sudeep Zhao, Qing |
| Author_xml | – sequence: 1 givenname: Boshuang orcidid: 0000-0003-0597-6179 surname: Huang fullname: Huang, Boshuang email: bh467@cornell.edu organization: School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA – sequence: 2 givenname: Sudeep orcidid: 0000-0003-1361-4565 surname: Salgia fullname: Salgia, Sudeep email: ss3827@cornell.edu organization: School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA – sequence: 3 givenname: Qing orcidid: 0000-0002-9590-4285 surname: Zhao fullname: Zhao, Qing email: qz16@cornell.edu organization: School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA |
| BookMark | eNp9kE1rAjEQhkOxULW9F3pZ6HltvndztPYTBAta6C3E7KxENGuTWOi_b0TpoYeeZhjeZ4Z5BqjnOw8IXRM8IgSru8X8bUQxpSNGhGJ1fYb6RHFSYl7JXu6xYKWoq48LNIhxjTHhXMk-Eg8umlUA2IJP5b2J0BRjm9wXFFMwwTu_KpwvZn7jPBRzSClP4iU6b80mwtWpDtH70-Ni8lJOZ8-vk_G0tFSRVPLaMIuJtEyISoBqq5Yul5QpYmXDLJPYKmUoN7SRDRFLIyvSEGU4tMZSw9kQ3R737kL3uYeY9LrbB59Pairzm1xhXucUPqZs6GIM0OpdcFsTvjXB-iBHZzn6IEef5GRE_kGsSya5zqdg3OY_8OYIOgD4vaMqJhjD7AfAMnI0 |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_TSP_2024_3450270 crossref_primary_10_1109_TSP_2022_3159388 crossref_primary_10_1016_j_apenergy_2024_124832 crossref_primary_10_1109_TSP_2024_3451412 crossref_primary_10_1007_s10994_023_06454_2 crossref_primary_10_1016_j_est_2025_117016 |
| Cites_doi | 10.1109/TIT.2008.920189 10.1109/TSP.2017.2731323 10.1109/ICASSP.2018.8461409 10.1145/1553374.1553381 10.1145/1273496.1273541 10.1007/11503415_17 10.1214/009053606000000786 10.1007/978-3-540-72927-3_5 10.1109/TSP.2014.2304431 10.1016/j.neucom.2019.06.064 10.1214/10-AOS843 10.1007/978-3-540-28650-9_8 10.1109/TIT.2011.2162269 10.1007/978-3-540-45167-9_28 10.1109/TIT.2014.2304455 10.1007/978-3-319-21852-6_3 10.1145/1143844.1143853 10.1214/aos/1079120131 10.1145/2591796.2591839 10.1214/009053606000001019 10.1214/19-EJS1635 10.1109/TSP.2022.3159388 10.1109/TSP.2010.2042491 10.1007/BF00993277 10.2200/S00429ED1V01Y201207AIM018 10.1609/aaai.v31i1.10907 10.1561/2200000037 10.1016/j.tcs.2010.12.054 10.1023/A:1007330508534 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2022.3159388 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 1958 |
| ExternalDocumentID | 10_1109_TSP_2022_3159388 9735330 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-1815559 funderid: 10.13039/501100008982 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-48a3c016c35575e9f7f2bb2391c6d3c360c99a24a2d6d15ba671d19a4efac2a43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790809400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Mon Jun 30 10:13:08 EDT 2025 Sat Nov 29 04:10:55 EST 2025 Tue Nov 18 22:11:34 EST 2025 Wed Aug 27 02:40:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-48a3c016c35575e9f7f2bb2391c6d3c360c99a24a2d6d15ba671d19a4efac2a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9590-4285 0000-0003-1361-4565 0000-0003-0597-6179 |
| PQID | 2659349048 |
| PQPubID | 85478 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TSP_2022_3159388 ieee_primary_9735330 proquest_journals_2659349048 crossref_citationtrail_10_1109_TSP_2022_3159388 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref34 Dasgupta (ref12) 2008 ref15 ref14 ref36 Beygelzimer (ref11) 2011 ref30 ref2 ref1 ref17 ref39 Awasthi (ref18) 2015 ref38 Zhang (ref22) 2014; 1 Awasthi (ref19) 2016; 49 Cortes (ref21) 2019 Cavallanti (ref31) 2009 Hanneke (ref37) 2015; 16 Koltchinskii (ref7) 2010; 11 ref24 ref23 ref26 ref25 ref41 ref44 Cortes (ref33) 2019 ref43 Beygelzimer (ref10) 2010 ref28 Balcan (ref16) 2013 ref27 Yang (ref32) 2011 ref29 ref8 ref9 ref4 ref3 ref5 Zhang (ref20) 2018; 75 ref40 Freund (ref42) 1997; 28 Hanneke (ref6) 2009 |
| References_xml | – ident: ref36 doi: 10.1109/TIT.2008.920189 – ident: ref26 doi: 10.1109/TSP.2017.2731323 – ident: ref28 doi: 10.1109/ICASSP.2018.8461409 – ident: ref9 doi: 10.1145/1553374.1553381 – start-page: 249 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2009 ident: ref31 article-title: Linear classification and selective sampling under low noise conditions – ident: ref5 doi: 10.1145/1273496.1273541 – ident: ref14 doi: 10.1007/11503415_17 – ident: ref38 doi: 10.1214/009053606000000786 – volume: 49 start-page: 152 issue: 6 year: 2016 ident: ref19 article-title: Learning and 1-bit compressed sensing under asymmetric noise publication-title: J. Mach. Learn. Res. – ident: ref15 doi: 10.1007/978-3-540-72927-3_5 – ident: ref29 doi: 10.1109/TSP.2014.2304431 – volume: 16 start-page: 3487 issue: 1 year: 2015 ident: ref37 article-title: Minimax analysis of active learning publication-title: J. Mach. Learn. Res. – ident: ref44 doi: 10.1016/j.neucom.2019.06.064 – ident: ref8 doi: 10.1214/10-AOS843 – ident: ref39 doi: 10.1007/978-3-540-28650-9_8 – volume-title: Proc. 22nd Conf. Learn. Theory (COLT) year: 2009 ident: ref6 article-title: Adaptive rates of convergence in active learning – ident: ref24 doi: 10.1109/TIT.2011.2162269 – ident: ref30 doi: 10.1007/978-3-540-45167-9_28 – volume: 11 start-page: 2457 issue: 9 year: 2010 ident: ref7 article-title: Rademacher complexities and bounding the excess risk in active learning publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 442 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2014 ident: ref22 article-title: Beyond disagreement-based agnostic active learning – ident: ref25 doi: 10.1109/TIT.2014.2304455 – volume-title: Proc. Workshop On-line Trading Exploration Exploitation year: 2011 ident: ref11 article-title: Efficient active learning – ident: ref40 doi: 10.1007/978-3-319-21852-6_3 – ident: ref4 doi: 10.1145/1143844.1143853 – ident: ref34 doi: 10.1214/aos/1079120131 – start-page: 288 volume-title: Proc. Conf. Learn. Theory year: 2013 ident: ref16 article-title: Active and passive learning of linear separators under log-concave distributions – ident: ref17 doi: 10.1145/2591796.2591839 – ident: ref35 doi: 10.1214/009053606000001019 – ident: ref13 doi: 10.1214/19-EJS1635 – start-page: 167 volume-title: Conf. Learn. Theory year: 2015 ident: ref18 article-title: Efficient learning of linear separators under bounded noise – start-page: 2801 volume-title: Proc. 22nd Int. Conf. Artif. Intell. Statist. year: 2019 ident: ref21 article-title: Region-based active learning – start-page: 2468 volume-title: Proc. 36th Int. Conf. Mach. Learn. year: 2019 ident: ref33 article-title: Active learning with disagreement graphs – ident: ref41 doi: 10.1109/TSP.2022.3159388 – ident: ref27 doi: 10.1109/TSP.2010.2042491 – volume: 75 start-page: 1 volume-title: Proc. Mach. Learn. Res. year: 2018 ident: ref20 article-title: Efficient active learning of sparse halfspaces – ident: ref1 doi: 10.1007/BF00993277 – start-page: 2079 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2011 ident: ref32 article-title: Active learning with a drifting distribution – ident: ref23 doi: 10.2200/S00429ED1V01Y201207AIM018 – ident: ref43 doi: 10.1609/aaai.v31i1.10907 – ident: ref3 doi: 10.1561/2200000037 – ident: ref2 doi: 10.1016/j.tcs.2010.12.054 – volume: 28 start-page: 133 issue: 2-3 year: 1997 ident: ref42 article-title: Selective sampling using the query by committee algorithm publication-title: Mach. Learn. doi: 10.1023/A:1007330508534 – start-page: 353 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2008 ident: ref12 article-title: A general agnostic active learning algorithm – start-page: 199 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2010 ident: ref10 article-title: Agnostic active learning without constraints |
| SSID | ssj0014496 |
| Score | 2.4421282 |
| Snippet | We study online active learning for classifying streaming instances within the framework of statistical learning theory. At each time, the learner either... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1947 |
| SubjectTerms | Active learning Algorithms Classification Complexity Complexity theory Distance learning Errors label complexity Learning theory Lower bounds Machine learning online learning Optimization Particle separators Picture archiving and communication systems Prediction algorithms Queries Real-time systems regret Signal processing algorithms statistical learning theory Tradeoffs |
| Title | Disagreement-Based Active Learning in Online Settings |
| URI | https://ieeexplore.ieee.org/document/9735330 https://www.proquest.com/docview/2659349048 |
| Volume | 70 |
| WOSCitedRecordID | wos000790809400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_JridEoPXgTj2iRtmuP8GJ7GYBN2K2mSykA6WTf_fl_TrgqK4K2HvEf5pX0feS_vB3Cd0TT2hTYkDqwhXIURkdRYwkyE8UdqFQo6sgkxHsfzuZy04La5C2Otdc1n9q58dLV8s9Sb8qhsIAUrmyHb0BYiqu5qNRUDzh0XF4YLjISxmG9Lkr4czKYTTAQpxfw0lMxxrHy5IMep8sMQO-8yOvjfex3Cfh1FesNq24-gZfNj2Ps2W7AL4eOiUJhMu-M_co_OynhDZ9y8eqbqq7fIvWrUqDe1rv-5OIGX0dPs4ZnUHAlEUxmsCY8V0xi2aYwbRGhlJhD9lDIZ6MgwzSJfS6koV9REBsFXkQhMIBW3mdJUcXYKnXyZ2zPwjEYtXIeZDlOOyhTXnCkE1gRlDZ73YLCFLdH1APGSx-ItcYmELxMEOimBTmqge3DTSLxXwzP-WNstgW3W1Zj2oL_dmaT-u4qERijCJRqf89-lLmC31F0dlfShs15t7CXs6I_1olhduQ_nExVWv3o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmqgHX2hEUffgxcQK23YfPeKDYERCAibcNt22GBIDhgV_v9PugiYaE2976HQ3X7vz6EznA7gc0TRuREqT2DeacBmERFBtCNMh-h-pkSjoyCaibjceDkWvBNeruzDGGFd8Zm7so8vl66la2KOyuoiYLYZcg_WAY9yT39Za5Qw4d2xc6DAwEsTRcJmUbIj6oN_DUJBSjFADwRzLypcRcqwqP1Sxsy-t3f992R7sFH6k18wXfh9KZnIA29-6C1YguB9nEsNpdwBIbtFcaa_p1JtXdFV99cYTL2826vWNq4DODuGl9TC4a5OCJYEoKvw54bFkCh03hZ5DFBgxihD_lDLhq1AzxcKGEkJSLqkONcIvw8jXvpDcjKSikrMjKE-mE3MMnlY4C1fBSAUpx8kkV5xJBFb7NgvPq1BfwpaoooW4ZbJ4S1wo0RAJAp1YoJMC6CpcrSTe8_YZf4ytWGBX4wpMq1BbrkxS_F9ZQkMU4QLVz8nvUhew2R48d5LOY_fpFLbse_KDkxqU57OFOYMN9TEfZ7Nzt4k-ATpJwsE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disagreement-Based+Active+Learning+in+Online+Settings&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Huang%2C+Boshuang&rft.au=Salgia%2C+Sudeep&rft.au=Zhao%2C+Qing&rft.date=2022&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=70&rft.spage=1947&rft.epage=1958&rft_id=info:doi/10.1109%2FTSP.2022.3159388&rft.externalDocID=9735330 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |