Disagreement-Based Active Learning in Online Settings

We study online active learning for classifying streaming instances within the framework of statistical learning theory. At each time, the learner either queries the label of the current instance or predicts the label based on past seen examples. The objective is to minimize the number of queries wh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 70; s. 1947 - 1958
Hlavní autoři: Huang, Boshuang, Salgia, Sudeep, Zhao, Qing
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study online active learning for classifying streaming instances within the framework of statistical learning theory. At each time, the learner either queries the label of the current instance or predicts the label based on past seen examples. The objective is to minimize the number of queries while constraining the number of prediction errors over a horizon of length <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula>. We develop a disagreement-based online learning algorithm for a general hypothesis space and under the Tsybakov noise and establish its label complexity under a constraint of bounded regret in terms of classification errors. We further establish a matching (up to a poly-logarithmic factor) lower bound, demonstrating the order optimality of the proposed algorithm. We address the tradeoff between label complexity and regret and show that the algorithm can be modified to operate at a different point on the tradeoff curve.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2022.3159388