Low-Power Cooling Codes With Efficient Encoding and Decoding
In a bus with <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> wires, each wire has two states, '0' or '1', representing one bit of information. Whenever the state transitions from '0' to '1', or ...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 66; H. 8; S. 4804 - 4818 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In a bus with <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> wires, each wire has two states, '0' or '1', representing one bit of information. Whenever the state transitions from '0' to '1', or '1' to '0', joule heating causes the temperature to rise, and high temperatures have adverse effects on on-chip bus performance. Recently, the class of low-power cooling (LPC) codes was proposed to control such state transitions during each transmission. As suggested in earlier work, LPC codes may be used to control simultaneously both the peak temperature and the average power consumption of on-chip buses. Specifically, an <inline-formula> <tex-math notation="LaTeX">(n,t,w) </tex-math></inline-formula>-LPC code is a coding scheme over <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> wires that (i) avoids state transitions on the <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> hottest wires (thus preventing the peak temperature from rising); and (ii) allows at most <inline-formula> <tex-math notation="LaTeX">w </tex-math></inline-formula> state transitions in each transmission (thus reducing average power consumption). In this paper, for any fixed value of <inline-formula> <tex-math notation="LaTeX">w </tex-math></inline-formula>, several constructions are presented for large LPC codes that can be encoded and decoded in time <inline-formula> <tex-math notation="LaTeX">O\left ({n \log ^{2} (n/w)}\right) </tex-math></inline-formula> along with the corresponding encoding/decoding schemes. In particular, we construct LPC codes of size <inline-formula> <tex-math notation="LaTeX">(n/w)^{w-1} </tex-math></inline-formula>, which are asymptotically optimal. We then modify these LPC codes to also correct errors in time <inline-formula> <tex-math notation="LaTeX">O(n^{3}) </tex-math></inline-formula>. For the case where <inline-formula> <tex-math notation="LaTeX">w </tex-math></inline-formula> is proportional to <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>, we further present a different construction of large LPC codes, based on a mapping from cooling codes to LPC codes. Using this construction, we obtain two families of LPC codes whose encoding and decoding complexities are <inline-formula> <tex-math notation="LaTeX">O(n^{3}) </tex-math></inline-formula>. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2020.2977871 |