Convergence analysis of the stochastic reflected forward–backward splitting algorithm

We propose and analyze the convergence of a novel stochastic algorithm for solving monotone inclusions that are the sum of a maximal monotone operator and a monotone, Lipschitzian operator. The propose algorithm requires only unbiased estimations of the Lipschitzian operator. We obtain the rate O (...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization letters Ročník 16; číslo 9; s. 2649 - 2679
Hlavní autori: Nguyen, Van Dung, Vũ, Bắng Công
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2022
Predmet:
ISSN:1862-4472, 1862-4480
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We propose and analyze the convergence of a novel stochastic algorithm for solving monotone inclusions that are the sum of a maximal monotone operator and a monotone, Lipschitzian operator. The propose algorithm requires only unbiased estimations of the Lipschitzian operator. We obtain the rate O ( l o g ( n ) / n ) in expectation for the strongly monotone case, as well as almost sure convergence for the general case. Furthermore, in the context of application to convex–concave saddle point problems, we derive the rate of the primal–dual gap. In particular, we also obtain O ( 1 / n ) rate convergence of the primal–dual gap in the deterministic setting.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-021-01844-8