Boundary Control and Observation to Inverse Coefficient Problem for Heat Equation With Unknown Source and Initial Value

This article investigates an inverse problem of determining the spatially variable diffusion coefficient of a one-dimensional heat equation with an unknown spatial varying source term and initial value. The big challenge of the problem comes from the multiple unknowns and very limited available data...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automatic control Ročník 66; číslo 12; s. 6003 - 6010
Hlavní autori: Zhao, Zhi-Xue, Guo, Bao-Zhu, Han, Zhong-Jie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9286, 1558-2523
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article investigates an inverse problem of determining the spatially variable diffusion coefficient of a one-dimensional heat equation with an unknown spatial varying source term and initial value. The big challenge of the problem comes from the multiple unknowns and very limited available data that are only boundary control and boundary observation at one end, in addition to the ill-posed nature of the inverse problem. We first design a switch on/off boundary control and show that the diffusion coefficient can be uniquely determined by the boundary observation. Next, a stable numerical algorithm for reconstruction of the diffusion coefficient is proposed by means of the matrix pencil method and optimal perturbation regularization technique. Finally, some numerical examples are presented to illustrate the effectiveness of the proposed identification algorithm.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2021.3058905