Privacy-Preserving Baseline Load Reconstruction for Residential Demand Response Considering Distributed Energy Resources
Customer baseline load (CBL) reconstruction is a critical problem in residential demand response. The difficulty of residential CBL lies in the variability of both irregular consumption and on-site distributed energy resources. Targeting the CBL reconstruction of residential prosumers, a regression-...
Saved in:
| Published in: | IEEE transactions on industrial informatics Vol. 18; no. 5; pp. 3541 - 3550 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1551-3203, 1941-0050 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Customer baseline load (CBL) reconstruction is a critical problem in residential demand response. The difficulty of residential CBL lies in the variability of both irregular consumption and on-site distributed energy resources. Targeting the CBL reconstruction of residential prosumers, a regression-based estimation scheme is proposed using stacked autoencoders (SAEs) under the federated learning (FL) framework. In the FL framework, each residential unit (RU) stores and trains data locally without sharing them with neighboring RUs or the independent third party (ITP) responsible for CBL reconstruction. Local updates containing no load information are exchanged with the ITP (server) for the training improvement. The FL framework can, thus, protect the privacy of customers. Experimental results show that the proposed FL-based cascaded SAE outperforms the baseline on all tests and achieves up to 62.5% improvement in reducing reconstruction error. Moreover, it has enhanced privacy-preserving knowledge-sharing ability, higher efficiency, and better stability. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1551-3203 1941-0050 |
| DOI: | 10.1109/TII.2021.3107400 |