Input Design for Regularized System Identification: Stationary Conditions and Sphere Preserving Algorithm

This article studies input design of kernel-based regularization methods for linear dynamical systems, which has been formulated as a nonconvex optimization problem with the criterion being a scalar measure of the posterior covariance of the Bayesian estimate, subject to a spherical constraint on th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 68; číslo 9; s. 5714 - 5720
Hlavní autoři: Mu, Biqiang, Kong, He, Chen, Tianshi, Jiang, Bo, Wang, Lei, Wu, Junfeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article studies input design of kernel-based regularization methods for linear dynamical systems, which has been formulated as a nonconvex optimization problem with the criterion being a scalar measure of the posterior covariance of the Bayesian estimate, subject to a spherical constraint on the input. The nonconvex nature of such input design problems poses significant challenges in deriving optimality conditions and efficient numerical algorithms. In this work, we first derive a sufficient condition for guaranteeing that a stationary point of the regularized input design problem is a global minimum. Next, we propose a spherical constraint preserving (SCP) algorithm to efficiently reach a stationary point of the design problem. Numerical simulation results show that the SCP algorithm finds the global minimum of the original design problem for all simulated cases and its average computational time is only approximately one tenth of that of the algorithms for previous methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3228200