Skewed perspectives: examining the influence of engagement maximization on content diversity in social media feeds

This article investigates the information landscape shaped by curation algorithms that seek to maximize user engagement. Leveraging unique behavioral data, we trained machine learning models to predict user engagement with tweets. Our study reveals how the pursuit of engagement maximization skews co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational social science Ročník 7; číslo 1; s. 721 - 739
Hlavní autor: Bouchaud, Paul
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.04.2024
Témata:
ISSN:2432-2717, 2432-2725
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article investigates the information landscape shaped by curation algorithms that seek to maximize user engagement. Leveraging unique behavioral data, we trained machine learning models to predict user engagement with tweets. Our study reveals how the pursuit of engagement maximization skews content visibility, favoring posts similar to previously engaged content while downplaying alternative perspectives. The empirical grounding of our work provides a basis for evidence-based policies aimed at fostering responsible social media platforms.
ISSN:2432-2717
2432-2725
DOI:10.1007/s42001-024-00255-w