MIMO Radar Transmit-Receive Design for Moving Target Detection in Signal-Dependent Clutter
This paper deals with the joint design of Multiple-Input Multiple-Output (MIMO) Space-Time Transmit Code (STTC) and Space-Time Receive Filter (STRF) to improve the detectability of a moving target embedded in signal-dependent clutter in the presence of uncertainties on the target azimuth angle and D...
Saved in:
| Published in: | IEEE transactions on vehicular technology Vol. 69; no. 1; pp. 522 - 536 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9545, 1939-9359 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper deals with the joint design of Multiple-Input Multiple-Output (MIMO) Space-Time Transmit Code (STTC) and Space-Time Receive Filter (STRF) to improve the detectability of a moving target embedded in signal-dependent clutter in the presence of uncertainties on the target azimuth angle and Doppler frequency. The Signal to Interference plus Noise Ratio (SINR) is considered as a figure of merit to maximize and multiple restrictions on STTC are forced at the design stage, i.e., similarity and modulus constraints as well as a uniform power requirement among the transmit antennas. To deal with the resulting non-convex design problem, a novel polynomial-time iterative procedure based on Successive Greedy Optimization (SGO) framework ensuring that SINR monotonically increases and converges to a finite value, is developed. Each iteration of the proposed algorithm involves the generalized eigenvalue decomposition to design STRF and a nested iterative technique involving Dinkelbach's procedure and an Alternating Direction Penalty Method (ADPM) to obtain STTC. Numerical results are provided to assess the performance of the proposed algorithm against some counterparts in terms of the optimized SINR value and computational complexity. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9545 1939-9359 |
| DOI: | 10.1109/TVT.2019.2951399 |