A Conditional Convolutional Autoencoder-Based Method for Monitoring Wind Turbine Blade Breakages
The wind turbine blade breakage is a catastrophic failure to a wind farm. Its earlier detection is critical to prevent the unscheduled downtime and loss of whole assets. This article presents a conditional convolutional autoencoder-based monitoring method, which is of twofold, for identifying wind t...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on industrial informatics Jg. 17; H. 9; S. 6390 - 6398 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1551-3203, 1941-0050 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The wind turbine blade breakage is a catastrophic failure to a wind farm. Its earlier detection is critical to prevent the unscheduled downtime and loss of whole assets. This article presents a conditional convolutional autoencoder-based monitoring method, which is of twofold, for identifying wind turbine blade breakages. First, a novel conditional convolutional autoencoder taking a multivariate set of data as input is developed to derive reconstruction errors, which reflect changes of system dynamics caused by impending blade breakages. Next, a statistical process control principle is applied to develop boundaries for triggering blade breakage alarms based on reconstruction errors. The effectiveness of the conditional convolutional autoencoder-based method is validated with datasets collected by supervisory control and data acquisition systems installed in multiple commercial wind farms. We also demonstrate advantages of the conditional convolutional autoencoder-based monitoring method by benchmarking against the classical autoencoder and conditional autoencoder-based monitoring methods. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1551-3203 1941-0050 |
| DOI: | 10.1109/TII.2020.3011441 |