A Conditional Convolutional Autoencoder-Based Method for Monitoring Wind Turbine Blade Breakages
The wind turbine blade breakage is a catastrophic failure to a wind farm. Its earlier detection is critical to prevent the unscheduled downtime and loss of whole assets. This article presents a conditional convolutional autoencoder-based monitoring method, which is of twofold, for identifying wind t...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial informatics Ročník 17; číslo 9; s. 6390 - 6398 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The wind turbine blade breakage is a catastrophic failure to a wind farm. Its earlier detection is critical to prevent the unscheduled downtime and loss of whole assets. This article presents a conditional convolutional autoencoder-based monitoring method, which is of twofold, for identifying wind turbine blade breakages. First, a novel conditional convolutional autoencoder taking a multivariate set of data as input is developed to derive reconstruction errors, which reflect changes of system dynamics caused by impending blade breakages. Next, a statistical process control principle is applied to develop boundaries for triggering blade breakage alarms based on reconstruction errors. The effectiveness of the conditional convolutional autoencoder-based method is validated with datasets collected by supervisory control and data acquisition systems installed in multiple commercial wind farms. We also demonstrate advantages of the conditional convolutional autoencoder-based monitoring method by benchmarking against the classical autoencoder and conditional autoencoder-based monitoring methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1551-3203 1941-0050 |
| DOI: | 10.1109/TII.2020.3011441 |