A Conditional Convolutional Autoencoder-Based Method for Monitoring Wind Turbine Blade Breakages

The wind turbine blade breakage is a catastrophic failure to a wind farm. Its earlier detection is critical to prevent the unscheduled downtime and loss of whole assets. This article presents a conditional convolutional autoencoder-based monitoring method, which is of twofold, for identifying wind t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 17; číslo 9; s. 6390 - 6398
Hlavní autoři: Yang, Luoxiao, Zhang, Zijun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1551-3203, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The wind turbine blade breakage is a catastrophic failure to a wind farm. Its earlier detection is critical to prevent the unscheduled downtime and loss of whole assets. This article presents a conditional convolutional autoencoder-based monitoring method, which is of twofold, for identifying wind turbine blade breakages. First, a novel conditional convolutional autoencoder taking a multivariate set of data as input is developed to derive reconstruction errors, which reflect changes of system dynamics caused by impending blade breakages. Next, a statistical process control principle is applied to develop boundaries for triggering blade breakage alarms based on reconstruction errors. The effectiveness of the conditional convolutional autoencoder-based method is validated with datasets collected by supervisory control and data acquisition systems installed in multiple commercial wind farms. We also demonstrate advantages of the conditional convolutional autoencoder-based monitoring method by benchmarking against the classical autoencoder and conditional autoencoder-based monitoring methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2020.3011441