Tool Wear Prediction via Multidimensional Stacked Sparse Autoencoders With Feature Fusion

Tool wear prediction is of critical importance to maintain the desired part quality and improve productivity. Inspired by the successful application of deep learning in many condition monitoring tasks. In this article, a novel modeling framework is presented, which includes multiple stacked sparse a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 16; číslo 8; s. 5150 - 5159
Hlavní autoři: Shi, Chengming, Luo, Bo, He, Songping, Li, Kai, Liu, Hongqi, Li, Bin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1551-3203, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Tool wear prediction is of critical importance to maintain the desired part quality and improve productivity. Inspired by the successful application of deep learning in many condition monitoring tasks. In this article, a novel modeling framework is presented, which includes multiple stacked sparse autoencoders and a nonlinear regression function for tool wear prediction. Multiple stacked sparse autoencoders consists of two main structures. One model is designed with multidimensional stacked sparse autoencoders, which can learn more features from different feature domains in the raw vibration signal, and another single-dimensional stacked sparse autoencoders is used for feature fusion and deeper features learning. And a modified loss function is applied that improves the learning ability. In addition, due to the good properties of tool wear process in nonstationarity and complex nonlinear, a nonlinear regression function is utilized to enhance the progressive tool wear prediction tasks. A dataset from a real manufacturing process is used to evaluate the performance of the proposed modeling framework. Experimental results show that tool wear can be predicted accurately and stably by the proposed tool wear predictive model, which outperforms the already developed methods.
AbstractList Tool wear prediction is of critical importance to maintain the desired part quality and improve productivity. Inspired by the successful application of deep learning in many condition monitoring tasks. In this article, a novel modeling framework is presented, which includes multiple stacked sparse autoencoders and a nonlinear regression function for tool wear prediction. Multiple stacked sparse autoencoders consists of two main structures. One model is designed with multidimensional stacked sparse autoencoders, which can learn more features from different feature domains in the raw vibration signal, and another single-dimensional stacked sparse autoencoders is used for feature fusion and deeper features learning. And a modified loss function is applied that improves the learning ability. In addition, due to the good properties of tool wear process in nonstationarity and complex nonlinear, a nonlinear regression function is utilized to enhance the progressive tool wear prediction tasks. A dataset from a real manufacturing process is used to evaluate the performance of the proposed modeling framework. Experimental results show that tool wear can be predicted accurately and stably by the proposed tool wear predictive model, which outperforms the already developed methods.
Author He, Songping
Li, Kai
Li, Bin
Luo, Bo
Liu, Hongqi
Shi, Chengming
Author_xml – sequence: 1
  givenname: Chengming
  orcidid: 0000-0002-6530-5695
  surname: Shi
  fullname: Shi, Chengming
  email: 513864035@qq.com
  organization: Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Bo
  surname: Luo
  fullname: Luo, Bo
  email: b.luo@sheffield.ac.uk
  organization: Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, U.K
– sequence: 3
  givenname: Songping
  orcidid: 0000-0002-7212-7591
  surname: He
  fullname: He, Songping
  email: 8562576@qq.com
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 4
  givenname: Kai
  surname: Li
  fullname: Li, Kai
  email: 15527965836@163.com
  organization: Huazhong University of Science and Technology, Wuhan, China
– sequence: 5
  givenname: Hongqi
  surname: Liu
  fullname: Liu, Hongqi
  email: liuhongqi328@163.com
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 6
  givenname: Bin
  orcidid: 0000-0002-8722-8934
  surname: Li
  fullname: Li, Bin
  email: li_bin_hust@163.com
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kM9LwzAUgIMouE3vgpeA586XpGmbowyng4nCJsNTydJXzKzNTFLB_96WiQcPnt7j8b734xuT49a1SMgFgyljoK7Xi8WUA1NTrlIlpDwiI6ZSlgBIOO5zKVkiOIhTMg5hByByEGpEXtbONXSD2tMnj5U10bqWflpNH7om2sq-Yxv6km7oKmrzhhVd7bUPSG-66LA1rkIf6MbGVzpHHTuPdN4NxBk5qXUT8PwnTsjz_HY9u0-Wj3eL2c0yMVyxmLA6yw3orckzqLYpT2ueCkSsZWG2RZ3mW-gfMoJrpQyCQS7BFMAgBSNTLcSEXB3m7r376DDEcuc63x8cSi5UVuRZJvO-Cw5dxrsQPNbl3tt37b9KBuUgsOwFloPA8kdgj2R_EGOjHvxEr23zH3h5AG3_x--eoii4EJn4BlMjf7s
CODEN ITIICH
CitedBy_id crossref_primary_10_1016_j_compind_2022_103782
crossref_primary_10_1016_j_jmsy_2024_07_010
crossref_primary_10_1007_s00170_024_14273_5
crossref_primary_10_1016_j_rcim_2022_102441
crossref_primary_10_1088_1742_6596_2456_1_012021
crossref_primary_10_1109_TIM_2021_3077995
crossref_primary_10_1007_s10845_022_02044_6
crossref_primary_10_1007_s00170_022_08916_8
crossref_primary_10_1016_j_eswa_2023_122966
crossref_primary_10_1109_ACCESS_2021_3051530
crossref_primary_10_1007_s00170_024_13811_5
crossref_primary_10_3390_app15126586
crossref_primary_10_1109_TASE_2024_3369659
crossref_primary_10_1021_acsmaterialslett_5c00688
crossref_primary_10_1016_j_knosys_2022_109537
crossref_primary_10_1016_j_cie_2023_109795
crossref_primary_10_1007_s00170_021_07325_7
crossref_primary_10_1016_j_aei_2023_102106
crossref_primary_10_1016_j_engappai_2024_108580
crossref_primary_10_1016_j_neucom_2022_04_044
crossref_primary_10_1109_TIM_2022_3173278
crossref_primary_10_1016_j_measurement_2024_115076
crossref_primary_10_1016_j_asoc_2023_110922
crossref_primary_10_1109_TASE_2023_3260281
crossref_primary_10_1109_LRA_2022_3187617
crossref_primary_10_1093_jcde_qwad037
crossref_primary_10_1109_TIM_2021_3117082
crossref_primary_10_1109_TIE_2021_3139202
crossref_primary_10_1109_TIE_2022_3156148
crossref_primary_10_1016_j_cja_2021_04_001
crossref_primary_10_1109_TSUSC_2024_3390003
crossref_primary_10_1109_TIM_2022_3224995
crossref_primary_10_1007_s40436_025_00564_x
crossref_primary_10_1016_j_jmapro_2025_08_035
crossref_primary_10_1007_s11063_021_10659_8
crossref_primary_10_1109_TCYB_2022_3178116
crossref_primary_10_1109_TIM_2021_3075754
crossref_primary_10_1016_j_knosys_2025_113753
crossref_primary_10_1007_s00170_022_08861_6
crossref_primary_10_1016_j_jprocont_2024_103300
crossref_primary_10_1088_1361_6501_ad876e
crossref_primary_10_1016_j_knosys_2024_111454
crossref_primary_10_1016_j_engappai_2025_111931
crossref_primary_10_1016_j_neunet_2025_107843
crossref_primary_10_1016_j_rcim_2024_102901
crossref_primary_10_1080_00207543_2023_2289076
crossref_primary_10_1109_ACCESS_2023_3311269
crossref_primary_10_1016_j_jmsy_2023_09_011
crossref_primary_10_1007_s12206_025_0204_7
crossref_primary_10_1088_2631_8695_ad5f1a
crossref_primary_10_1016_j_rcim_2022_102391
crossref_primary_10_1016_j_compind_2025_104302
crossref_primary_10_3390_coatings14070827
crossref_primary_10_1016_j_compeleceng_2024_109720
crossref_primary_10_1007_s00170_020_05684_1
crossref_primary_10_3390_pr13010013
crossref_primary_10_1007_s00170_025_15472_4
crossref_primary_10_1016_j_ress_2022_108444
crossref_primary_10_3390_machines11100927
crossref_primary_10_1007_s00170_025_15026_8
crossref_primary_10_1016_j_aei_2024_102382
crossref_primary_10_1109_TIM_2021_3096283
crossref_primary_10_1109_TIM_2023_3273683
crossref_primary_10_1088_1361_6501_adeeb5
Cites_doi 10.1016/j.rcim.2016.05.010
10.1016/j.ymssp.2017.11.021
10.1109/TIE.2017.2745473
10.1109/TMI.2016.2528162
10.1016/j.eswa.2013.12.026
10.1109/TIM.2013.2281576
10.1007/s00170-016-9735-5
10.1016/j.jmsy.2017.01.004
10.1109/ICSensT.2016.7796266
10.1109/TIE.2016.2519325
10.1016/j.ymssp.2015.10.025
10.1109/JSYST.2015.2425793
10.1109/TASE.2015.2513208
10.1109/TIE.2018.2856193
10.1109/TSG.2016.2558200
10.1109/MFI.2015.7295820
10.1109/TR.2018.2831256
10.1016/j.ymssp.2015.04.019
10.1007/s00170-011-3504-2
10.1007/s00170-016-9070-x
10.1109/TIE.2018.2807414
10.1109/TII.2017.2723943
10.1007/s00521-016-2790-x
10.1016/j.precisioneng.2015.06.007
10.1038/nature14539
10.1016/j.jmapro.2016.03.010
10.1126/science.1127647
10.1016/j.jsv.2016.05.027
10.1109/TIE.2013.2274422
10.1016/j.ymssp.2006.07.016
10.1109/TIM.2016.2584238
10.1142/S0129065714500348
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2019.2949355
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 5159
ExternalDocumentID 10_1109_TII_2019_2949355
8882336
Genre orig-research
GrantInformation_xml – fundername: Major special projects in Jiangsu Province of China
  grantid: SBE2017020146
– fundername: National Natural Science Foundation of China
  grantid: 51705174; 51625502
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-1f67c0abc760db424f243eeef58cb8f47b0949c32a99ce0ce250c801040c54a33
IEDL.DBID RIE
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537198400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:23:40 EDT 2025
Sat Nov 29 04:16:50 EST 2025
Tue Nov 18 22:37:10 EST 2025
Wed Aug 27 02:43:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-1f67c0abc760db424f243eeef58cb8f47b0949c32a99ce0ce250c801040c54a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6530-5695
0000-0002-7212-7591
0000-0002-8722-8934
PQID 2396876657
PQPubID 85507
PageCount 10
ParticipantIDs ieee_primary_8882336
crossref_primary_10_1109_TII_2019_2949355
proquest_journals_2396876657
crossref_citationtrail_10_1109_TII_2019_2949355
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
lecun (ref19) 2015; 521
ref34
ref12
ref37
ref15
ref36
ref31
ref30
ref33
ref11
ref32
ref10
ref2
vincent (ref18) 2010; 11
ref1
ref17
ref16
li (ref9) 2015; 34
ref24
ref23
ref26
ref25
ref20
ref22
ref28
poultney (ref27) 2007
ref29
ref8
ref7
chen (ref21) 2015; 17
ref4
ref3
ref6
ku (ref14) 2014; 12
ref5
References_xml – volume: 34
  start-page: 81
  year: 2015
  ident: ref9
  article-title: Study on the technology of tool wear monitoring by modifying least square support vector machine via Kalman filter
  publication-title: Mech Sci Technol Aerosp Eng
– ident: ref12
  doi: 10.1016/j.rcim.2016.05.010
– start-page: 1137
  year: 2007
  ident: ref27
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Proc 19th Int Conf Neural Inf Process Syst
– ident: ref7
  doi: 10.1016/j.ymssp.2017.11.021
– ident: ref30
  doi: 10.1109/TIE.2017.2745473
– ident: ref29
  doi: 10.1109/TMI.2016.2528162
– ident: ref20
  doi: 10.1016/j.eswa.2013.12.026
– ident: ref3
  doi: 10.1109/TIM.2013.2281576
– ident: ref32
  doi: 10.1007/s00170-016-9735-5
– ident: ref6
  doi: 10.1016/j.jmsy.2017.01.004
– ident: ref13
  doi: 10.1109/ICSensT.2016.7796266
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref18
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– volume: 12
  start-page: 68
  year: 2014
  ident: ref14
  article-title: Recognition of tool wear state based on wavelet packet and BP neural network
  publication-title: Modern Manufature Engineering
– volume: 17
  start-page: 2379
  year: 2015
  ident: ref21
  article-title: Multi-layer neural network with deep belief network for gearbox fault diagnosis
  publication-title: J Vibroeng
– ident: ref23
  doi: 10.1109/TIE.2016.2519325
– ident: ref22
  doi: 10.1016/j.ymssp.2015.10.025
– ident: ref37
  doi: 10.1109/JSYST.2015.2425793
– ident: ref34
  doi: 10.1109/TASE.2015.2513208
– ident: ref2
  doi: 10.1109/TIE.2018.2856193
– ident: ref25
  doi: 10.1109/TSG.2016.2558200
– ident: ref4
  doi: 10.1109/MFI.2015.7295820
– ident: ref35
  doi: 10.1109/TR.2018.2831256
– ident: ref15
  doi: 10.1016/j.ymssp.2015.04.019
– ident: ref31
  doi: 10.1007/s00170-011-3504-2
– ident: ref11
  doi: 10.1007/s00170-016-9070-x
– ident: ref1
  doi: 10.1109/TIE.2018.2807414
– ident: ref33
  doi: 10.1109/TII.2017.2723943
– ident: ref26
  doi: 10.1007/s00521-016-2790-x
– ident: ref10
  doi: 10.1016/j.precisioneng.2015.06.007
– volume: 521
  start-page: 436
  year: 2015
  ident: ref19
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref5
  doi: 10.1016/j.jmapro.2016.03.010
– ident: ref17
  doi: 10.1126/science.1127647
– ident: ref24
  doi: 10.1016/j.jsv.2016.05.027
– ident: ref36
  doi: 10.1109/TIE.2013.2274422
– ident: ref8
  doi: 10.1016/j.ymssp.2006.07.016
– ident: ref16
  doi: 10.1109/TIM.2016.2584238
– ident: ref28
  doi: 10.1142/S0129065714500348
SSID ssj0037039
Score 2.5304573
Snippet Tool wear prediction is of critical importance to maintain the desired part quality and improve productivity. Inspired by the successful application of deep...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5150
SubjectTerms Condition monitoring
Deep learning
Feature extraction
feature fusion
Force
Ground penetrating radar
Informatics
Machine learning
Modelling
Prediction models
Predictive models
stacked sparse autoencoders
Tool wear
tool wear prediction
Vibrations
Title Tool Wear Prediction via Multidimensional Stacked Sparse Autoencoders With Feature Fusion
URI https://ieeexplore.ieee.org/document/8882336
https://www.proquest.com/docview/2396876657
Volume 16
WOSCitedRecordID wos000537198400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4UEP_pridEoOXgS7pUnbNMchDgcyBk42TyVNUhyMdWzt_n6TrBuKIngo9JAHab6X5Ht9L18A7nCsqHkij8S-9AKiAk9gJT1D1rMYa2U4hdOZfWGDQTyZ8GENHnZnYbTWrvhMt-2ry-WrXJb2V1nHRGuE0mgP9hiLNme1tqsuNZ7LnTZq6HuUYLpNSWLeGfX7toaLtwkPrJz4ty3I3anyYyF2u0vv-H_9OoGjikWi7gb2U6jp-RkcftEWbMD7KM9naGwcGQ2XNhtjEUDrqUDuzK2yqv4bRQ5kCKeZywq9LkyUq1G3LHIrb2lLnNF4WnwgyxPLpUa90lqcw1vvafT47FX3KHiScL_w_CxiEotUsgirNCBBRgJqPiILY5nGWcBSE-NxSYngXGostaFFMraBGpZhICi9gPo8n-tLQBkTMRM-S9PUUC-aCYUZwRnWzBeGWakmdLZDm8hKZNzedTFLXLCBeWLASCwYSQVGE-53FouNwMYfbRt28HftqnFvQmuLXlLNwFVCKI_MSh-F7Op3q2s4IDZ2dsV8LagXy1LfwL5cF9PV8tY51yfVLMxp
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oFNSDv8X5MwcvgnVpkjbNUcThcA7BiXoqaZLiYKwy2_39Jlk3FEXwUOghD9J8L8n3-l6-AJzhRFP7xAFJQhUwolkgsVaBJet5go22nMLrzHZ5r5e8vIiHBbiYn4UxxvjiM3PpXn0uXxeqcr_KWjZaI5TGi7AUMUbw9LTWbN2l1neFV0eNwoASTGdJSSxa_U7HVXGJSyKYExT_tgn5W1V-LMV-f2lv_K9nm7Be80h0NQV-CxbMaBvWvqgL7sBrvyiG6Nm6MnoYu3yMwwBNBhL5U7fa6fpPNTmQpZx2Nmv0-G7jXIOuqrJwApeuyBk9D8o35JhiNTaoXTmLXXhq3_Svb4P6JoVAERGWQZjHXGGZKR5jnTHCcsKo_Yg8SlSW5IxnNsoTihIphDJYGUuMVOJCNawiJindg8aoGJl9QDmXCZchz7LMki-aS405wTk2PJSWW-kmtGZDm6paZtzddjFMfbiBRWrBSB0YaQ1GE87nFu9TiY0_2u64wZ-3q8e9CUcz9NJ6Dn6khIrYrvVxxA9-tzqFldv-fTftdnp3h7BKXCTtS_uOoFGOK3MMy2pSDj7GJ97RPgGgBM-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tool+Wear+Prediction+via+Multidimensional+Stacked+Sparse+Autoencoders+With+Feature+Fusion&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Shi%2C+Chengming&rft.au=Luo%2C+Bo&rft.au=He%2C+Songping&rft.au=Li%2C+Kai&rft.date=2020-08-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=16&rft.issue=8&rft.spage=5150&rft.epage=5159&rft_id=info:doi/10.1109%2FTII.2019.2949355&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2019_2949355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon