Tool Wear Prediction via Multidimensional Stacked Sparse Autoencoders With Feature Fusion
Tool wear prediction is of critical importance to maintain the desired part quality and improve productivity. Inspired by the successful application of deep learning in many condition monitoring tasks. In this article, a novel modeling framework is presented, which includes multiple stacked sparse a...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial informatics Ročník 16; číslo 8; s. 5150 - 5159 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Tool wear prediction is of critical importance to maintain the desired part quality and improve productivity. Inspired by the successful application of deep learning in many condition monitoring tasks. In this article, a novel modeling framework is presented, which includes multiple stacked sparse autoencoders and a nonlinear regression function for tool wear prediction. Multiple stacked sparse autoencoders consists of two main structures. One model is designed with multidimensional stacked sparse autoencoders, which can learn more features from different feature domains in the raw vibration signal, and another single-dimensional stacked sparse autoencoders is used for feature fusion and deeper features learning. And a modified loss function is applied that improves the learning ability. In addition, due to the good properties of tool wear process in nonstationarity and complex nonlinear, a nonlinear regression function is utilized to enhance the progressive tool wear prediction tasks. A dataset from a real manufacturing process is used to evaluate the performance of the proposed modeling framework. Experimental results show that tool wear can be predicted accurately and stably by the proposed tool wear predictive model, which outperforms the already developed methods. |
|---|---|
| AbstractList | Tool wear prediction is of critical importance to maintain the desired part quality and improve productivity. Inspired by the successful application of deep learning in many condition monitoring tasks. In this article, a novel modeling framework is presented, which includes multiple stacked sparse autoencoders and a nonlinear regression function for tool wear prediction. Multiple stacked sparse autoencoders consists of two main structures. One model is designed with multidimensional stacked sparse autoencoders, which can learn more features from different feature domains in the raw vibration signal, and another single-dimensional stacked sparse autoencoders is used for feature fusion and deeper features learning. And a modified loss function is applied that improves the learning ability. In addition, due to the good properties of tool wear process in nonstationarity and complex nonlinear, a nonlinear regression function is utilized to enhance the progressive tool wear prediction tasks. A dataset from a real manufacturing process is used to evaluate the performance of the proposed modeling framework. Experimental results show that tool wear can be predicted accurately and stably by the proposed tool wear predictive model, which outperforms the already developed methods. |
| Author | He, Songping Li, Kai Li, Bin Luo, Bo Liu, Hongqi Shi, Chengming |
| Author_xml | – sequence: 1 givenname: Chengming orcidid: 0000-0002-6530-5695 surname: Shi fullname: Shi, Chengming email: 513864035@qq.com organization: Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Bo surname: Luo fullname: Luo, Bo email: b.luo@sheffield.ac.uk organization: Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, U.K – sequence: 3 givenname: Songping orcidid: 0000-0002-7212-7591 surname: He fullname: He, Songping email: 8562576@qq.com organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 4 givenname: Kai surname: Li fullname: Li, Kai email: 15527965836@163.com organization: Huazhong University of Science and Technology, Wuhan, China – sequence: 5 givenname: Hongqi surname: Liu fullname: Liu, Hongqi email: liuhongqi328@163.com organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 6 givenname: Bin orcidid: 0000-0002-8722-8934 surname: Li fullname: Li, Bin email: li_bin_hust@163.com organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China |
| BookMark | eNp9kM9LwzAUgIMouE3vgpeA586XpGmbowyng4nCJsNTydJXzKzNTFLB_96WiQcPnt7j8b734xuT49a1SMgFgyljoK7Xi8WUA1NTrlIlpDwiI6ZSlgBIOO5zKVkiOIhTMg5hByByEGpEXtbONXSD2tMnj5U10bqWflpNH7om2sq-Yxv6km7oKmrzhhVd7bUPSG-66LA1rkIf6MbGVzpHHTuPdN4NxBk5qXUT8PwnTsjz_HY9u0-Wj3eL2c0yMVyxmLA6yw3orckzqLYpT2ueCkSsZWG2RZ3mW-gfMoJrpQyCQS7BFMAgBSNTLcSEXB3m7r376DDEcuc63x8cSi5UVuRZJvO-Cw5dxrsQPNbl3tt37b9KBuUgsOwFloPA8kdgj2R_EGOjHvxEr23zH3h5AG3_x--eoii4EJn4BlMjf7s |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1016_j_compind_2022_103782 crossref_primary_10_1016_j_jmsy_2024_07_010 crossref_primary_10_1007_s00170_024_14273_5 crossref_primary_10_1016_j_rcim_2022_102441 crossref_primary_10_1088_1742_6596_2456_1_012021 crossref_primary_10_1109_TIM_2021_3077995 crossref_primary_10_1007_s10845_022_02044_6 crossref_primary_10_1007_s00170_022_08916_8 crossref_primary_10_1016_j_eswa_2023_122966 crossref_primary_10_1109_ACCESS_2021_3051530 crossref_primary_10_1007_s00170_024_13811_5 crossref_primary_10_3390_app15126586 crossref_primary_10_1109_TASE_2024_3369659 crossref_primary_10_1021_acsmaterialslett_5c00688 crossref_primary_10_1016_j_knosys_2022_109537 crossref_primary_10_1016_j_cie_2023_109795 crossref_primary_10_1007_s00170_021_07325_7 crossref_primary_10_1016_j_aei_2023_102106 crossref_primary_10_1016_j_engappai_2024_108580 crossref_primary_10_1016_j_neucom_2022_04_044 crossref_primary_10_1109_TIM_2022_3173278 crossref_primary_10_1016_j_measurement_2024_115076 crossref_primary_10_1016_j_asoc_2023_110922 crossref_primary_10_1109_TASE_2023_3260281 crossref_primary_10_1109_LRA_2022_3187617 crossref_primary_10_1093_jcde_qwad037 crossref_primary_10_1109_TIM_2021_3117082 crossref_primary_10_1109_TIE_2021_3139202 crossref_primary_10_1109_TIE_2022_3156148 crossref_primary_10_1016_j_cja_2021_04_001 crossref_primary_10_1109_TSUSC_2024_3390003 crossref_primary_10_1109_TIM_2022_3224995 crossref_primary_10_1007_s40436_025_00564_x crossref_primary_10_1016_j_jmapro_2025_08_035 crossref_primary_10_1007_s11063_021_10659_8 crossref_primary_10_1109_TCYB_2022_3178116 crossref_primary_10_1109_TIM_2021_3075754 crossref_primary_10_1016_j_knosys_2025_113753 crossref_primary_10_1007_s00170_022_08861_6 crossref_primary_10_1016_j_jprocont_2024_103300 crossref_primary_10_1088_1361_6501_ad876e crossref_primary_10_1016_j_knosys_2024_111454 crossref_primary_10_1016_j_engappai_2025_111931 crossref_primary_10_1016_j_neunet_2025_107843 crossref_primary_10_1016_j_rcim_2024_102901 crossref_primary_10_1080_00207543_2023_2289076 crossref_primary_10_1109_ACCESS_2023_3311269 crossref_primary_10_1016_j_jmsy_2023_09_011 crossref_primary_10_1007_s12206_025_0204_7 crossref_primary_10_1088_2631_8695_ad5f1a crossref_primary_10_1016_j_rcim_2022_102391 crossref_primary_10_1016_j_compind_2025_104302 crossref_primary_10_3390_coatings14070827 crossref_primary_10_1016_j_compeleceng_2024_109720 crossref_primary_10_1007_s00170_020_05684_1 crossref_primary_10_3390_pr13010013 crossref_primary_10_1007_s00170_025_15472_4 crossref_primary_10_1016_j_ress_2022_108444 crossref_primary_10_3390_machines11100927 crossref_primary_10_1007_s00170_025_15026_8 crossref_primary_10_1016_j_aei_2024_102382 crossref_primary_10_1109_TIM_2021_3096283 crossref_primary_10_1109_TIM_2023_3273683 crossref_primary_10_1088_1361_6501_adeeb5 |
| Cites_doi | 10.1016/j.rcim.2016.05.010 10.1016/j.ymssp.2017.11.021 10.1109/TIE.2017.2745473 10.1109/TMI.2016.2528162 10.1016/j.eswa.2013.12.026 10.1109/TIM.2013.2281576 10.1007/s00170-016-9735-5 10.1016/j.jmsy.2017.01.004 10.1109/ICSensT.2016.7796266 10.1109/TIE.2016.2519325 10.1016/j.ymssp.2015.10.025 10.1109/JSYST.2015.2425793 10.1109/TASE.2015.2513208 10.1109/TIE.2018.2856193 10.1109/TSG.2016.2558200 10.1109/MFI.2015.7295820 10.1109/TR.2018.2831256 10.1016/j.ymssp.2015.04.019 10.1007/s00170-011-3504-2 10.1007/s00170-016-9070-x 10.1109/TIE.2018.2807414 10.1109/TII.2017.2723943 10.1007/s00521-016-2790-x 10.1016/j.precisioneng.2015.06.007 10.1038/nature14539 10.1016/j.jmapro.2016.03.010 10.1126/science.1127647 10.1016/j.jsv.2016.05.027 10.1109/TIE.2013.2274422 10.1016/j.ymssp.2006.07.016 10.1109/TIM.2016.2584238 10.1142/S0129065714500348 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2019.2949355 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 5159 |
| ExternalDocumentID | 10_1109_TII_2019_2949355 8882336 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Major special projects in Jiangsu Province of China grantid: SBE2017020146 – fundername: National Natural Science Foundation of China grantid: 51705174; 51625502 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-1f67c0abc760db424f243eeef58cb8f47b0949c32a99ce0ce250c801040c54a33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537198400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:23:40 EDT 2025 Sat Nov 29 04:16:50 EST 2025 Tue Nov 18 22:37:10 EST 2025 Wed Aug 27 02:43:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-1f67c0abc760db424f243eeef58cb8f47b0949c32a99ce0ce250c801040c54a33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6530-5695 0000-0002-7212-7591 0000-0002-8722-8934 |
| PQID | 2396876657 |
| PQPubID | 85507 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_8882336 crossref_primary_10_1109_TII_2019_2949355 proquest_journals_2396876657 crossref_citationtrail_10_1109_TII_2019_2949355 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 lecun (ref19) 2015; 521 ref34 ref12 ref37 ref15 ref36 ref31 ref30 ref33 ref11 ref32 ref10 ref2 vincent (ref18) 2010; 11 ref1 ref17 ref16 li (ref9) 2015; 34 ref24 ref23 ref26 ref25 ref20 ref22 ref28 poultney (ref27) 2007 ref29 ref8 ref7 chen (ref21) 2015; 17 ref4 ref3 ref6 ku (ref14) 2014; 12 ref5 |
| References_xml | – volume: 34 start-page: 81 year: 2015 ident: ref9 article-title: Study on the technology of tool wear monitoring by modifying least square support vector machine via Kalman filter publication-title: Mech Sci Technol Aerosp Eng – ident: ref12 doi: 10.1016/j.rcim.2016.05.010 – start-page: 1137 year: 2007 ident: ref27 article-title: Efficient learning of sparse representations with an energy-based model publication-title: Proc 19th Int Conf Neural Inf Process Syst – ident: ref7 doi: 10.1016/j.ymssp.2017.11.021 – ident: ref30 doi: 10.1109/TIE.2017.2745473 – ident: ref29 doi: 10.1109/TMI.2016.2528162 – ident: ref20 doi: 10.1016/j.eswa.2013.12.026 – ident: ref3 doi: 10.1109/TIM.2013.2281576 – ident: ref32 doi: 10.1007/s00170-016-9735-5 – ident: ref6 doi: 10.1016/j.jmsy.2017.01.004 – ident: ref13 doi: 10.1109/ICSensT.2016.7796266 – volume: 11 start-page: 3371 year: 2010 ident: ref18 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – volume: 12 start-page: 68 year: 2014 ident: ref14 article-title: Recognition of tool wear state based on wavelet packet and BP neural network publication-title: Modern Manufature Engineering – volume: 17 start-page: 2379 year: 2015 ident: ref21 article-title: Multi-layer neural network with deep belief network for gearbox fault diagnosis publication-title: J Vibroeng – ident: ref23 doi: 10.1109/TIE.2016.2519325 – ident: ref22 doi: 10.1016/j.ymssp.2015.10.025 – ident: ref37 doi: 10.1109/JSYST.2015.2425793 – ident: ref34 doi: 10.1109/TASE.2015.2513208 – ident: ref2 doi: 10.1109/TIE.2018.2856193 – ident: ref25 doi: 10.1109/TSG.2016.2558200 – ident: ref4 doi: 10.1109/MFI.2015.7295820 – ident: ref35 doi: 10.1109/TR.2018.2831256 – ident: ref15 doi: 10.1016/j.ymssp.2015.04.019 – ident: ref31 doi: 10.1007/s00170-011-3504-2 – ident: ref11 doi: 10.1007/s00170-016-9070-x – ident: ref1 doi: 10.1109/TIE.2018.2807414 – ident: ref33 doi: 10.1109/TII.2017.2723943 – ident: ref26 doi: 10.1007/s00521-016-2790-x – ident: ref10 doi: 10.1016/j.precisioneng.2015.06.007 – volume: 521 start-page: 436 year: 2015 ident: ref19 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref5 doi: 10.1016/j.jmapro.2016.03.010 – ident: ref17 doi: 10.1126/science.1127647 – ident: ref24 doi: 10.1016/j.jsv.2016.05.027 – ident: ref36 doi: 10.1109/TIE.2013.2274422 – ident: ref8 doi: 10.1016/j.ymssp.2006.07.016 – ident: ref16 doi: 10.1109/TIM.2016.2584238 – ident: ref28 doi: 10.1142/S0129065714500348 |
| SSID | ssj0037039 |
| Score | 2.5304573 |
| Snippet | Tool wear prediction is of critical importance to maintain the desired part quality and improve productivity. Inspired by the successful application of deep... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5150 |
| SubjectTerms | Condition monitoring Deep learning Feature extraction feature fusion Force Ground penetrating radar Informatics Machine learning Modelling Prediction models Predictive models stacked sparse autoencoders Tool wear tool wear prediction Vibrations |
| Title | Tool Wear Prediction via Multidimensional Stacked Sparse Autoencoders With Feature Fusion |
| URI | https://ieeexplore.ieee.org/document/8882336 https://www.proquest.com/docview/2396876657 |
| Volume | 16 |
| WOSCitedRecordID | wos000537198400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5UPKwH1yeOq9IHLwvGSfqRTh9FHPQigrOop9BPHJCJjIm_366ezOCyi-Athy46qaqurkpVfQVwSmnAZFhUXqqqjIsQMq1Lm1GjrCmEs8y5NGxC3t5Wj4_qbgXOlr0w3vtUfObP8THl8l1jO_xVNozRGmWsXIVVKct5r9bC6rKouSpho4oi7puzRUoyV8PxzQ3WcKlzqjjCif91BaWZKv8Y4nS7jH5-7722YLP3IsnFXOzbsOKnO7DxCVtwF57GTfNCHqIik7sZZmNQAuR9oknquXWI6j9H5CDR4Yxn2ZH71xjlenLRtQ3CW2KJM3mYtM8E_cRu5smoQ4o9-DO6Gl9eZ_0chcxSVbRZEUppc22sLHNnOOWBchY_IojKmipwaWKMpyyjWinrc-ujW2QrDNRyK7hmbB_Wps3UHwAxUnumKhdM4XiQshIiMpQy7azmgpkBDBesrW0PMo6zLl7qFGzkqo7CqFEYdS-MAfxeUrzOATa-WLuLzF-u6_k-gKOF9Or-BL7VlKkyWvpSyMP_U_2CHxRj51TMdwRr7azzx7Bu39vJ2-wkKdcHa9TNDg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_UFtSHtmqL1_qxD74UjJfsR5J9lOLhoR5Cr6hPYT_xQC5yJv797uzljhZF6FsedthkZnZ2JjPzG4AjSj0mw4LyUlkmXHifKJWbhGppdCasYdbGYRPFaFTe3srrFThe9sI452LxmTvBx5jLt7Vp8VdZP0RrlLF8FT4Izmk679Za2F0WdFdGdFSRhZ1TtkhKprI_Hg6xikueUMkRUPyfSyhOVXlliuP9Mvj8f2_2BT51fiQ5nQt-C1bcdBs2_0IX3IG7cV0_kJugyuR6hvkYlAF5nigSu24t4vrPMTlIcDnDabbk92OIcx05bZsaAS6xyJncTJp7gp5iO3Nk0CLFV_gzOBv_Ok-6SQqJoTJrksznhUmVNkWeWs0p95Sz8BFelEaXnhc6RHnSMKqkNC41LjhGpsRQLTWCK8a-wdq0nrpdILpQjsnSep1Z7ouiFCIwlDJljeKC6R70F6ytTAczjtMuHqoYbqSyCsKoUBhVJ4we_FxSPM4hNt5Zu4PMX67r-N6DvYX0qu4MPlWUyTzY-lwU39-mOoT18_HVZXU5HF38gA2KkXQs7duDtWbWun34aJ6bydPsICraCz-S0FU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tool+Wear+Prediction+via+Multidimensional+Stacked+Sparse+Autoencoders+With+Feature+Fusion&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Shi%2C+Chengming&rft.au=Luo%2C+Bo&rft.au=He%2C+Songping&rft.au=Li%2C+Kai&rft.date=2020-08-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=16&rft.issue=8&rft.spage=5150&rft.epage=5159&rft_id=info:doi/10.1109%2FTII.2019.2949355&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2019_2949355 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |