Simple Coding Techniques for Many-Hop Relaying

In this paper, we study the problem of relaying a single bit of information across a series of binary symmetric channels, and the associated trade-off between the number of hops <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula>, the transmis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 68; číslo 11; s. 7043 - 7053
Hlavní autoři: Ling, Yan Hao, Scarlett, Jonathan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the problem of relaying a single bit of information across a series of binary symmetric channels, and the associated trade-off between the number of hops <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula>, the transmission time <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>, and the error probability. We introduce a simple, efficient, and deterministic protocol that attains positive information velocity (i.e., a non-vanishing ratio <inline-formula> <tex-math notation="LaTeX">\frac {m}{n} </tex-math></inline-formula> and small error probability) and is significantly simpler than existing protocols that do so. In addition, we characterize the optimal low-noise and high-noise scaling laws of the information velocity, and we adapt our 1-bit protocol to transmit <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> bits over <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> hops with <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(m+k) </tex-math></inline-formula> transmission time.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2022.3180001