Simple Coding Techniques for Many-Hop Relaying
In this paper, we study the problem of relaying a single bit of information across a series of binary symmetric channels, and the associated trade-off between the number of hops <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula>, the transmis...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 68; no. 11; pp. 7043 - 7053 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we study the problem of relaying a single bit of information across a series of binary symmetric channels, and the associated trade-off between the number of hops <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula>, the transmission time <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>, and the error probability. We introduce a simple, efficient, and deterministic protocol that attains positive information velocity (i.e., a non-vanishing ratio <inline-formula> <tex-math notation="LaTeX">\frac {m}{n} </tex-math></inline-formula> and small error probability) and is significantly simpler than existing protocols that do so. In addition, we characterize the optimal low-noise and high-noise scaling laws of the information velocity, and we adapt our 1-bit protocol to transmit <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> bits over <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> hops with <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(m+k) </tex-math></inline-formula> transmission time. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2022.3180001 |