Infinite Families of Optimal Linear Codes Constructed From Simplicial Complexes

A linear code is optimal if it has the highest minimum distance of any linear code with a given length and dimension. We construct infinite families of optimal binary linear codes <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula&g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 66; H. 11; S. 6762 - 6773
Hauptverfasser: Hyun, Jong Yoon, Lee, Jungyun, Lee, Yoonjin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A linear code is optimal if it has the highest minimum distance of any linear code with a given length and dimension. We construct infinite families of optimal binary linear codes <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula> constructed from simplicial complexes in <inline-formula> <tex-math notation="LaTeX">\mathbb {F}^{n}_{2} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> is a simplicial complex in <inline-formula> <tex-math notation="LaTeX">\mathbb {F}^{n}_{2} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\Delta ^{c} </tex-math></inline-formula> the complement of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. We first find an explicit computable criterion for <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula> to be optimal; this criterion is given in terms of the 2-adic valuation of <inline-formula> <tex-math notation="LaTeX">\sum _{i=1}^{s} 2^{|A_{i}|-1} </tex-math></inline-formula>, where the <inline-formula> <tex-math notation="LaTeX">A_{i} </tex-math></inline-formula>'s are maximal elements of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. Furthermore, we obtain much simpler criteria under various specific conditions on the maximal elements of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. In particular, we find that <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula> is a Griesmer code if and only if the maximal elements of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> are pairwise disjoint and their sizes are all distinct. Specially, when <inline-formula> <tex-math notation="LaTeX">\mathcal {F} </tex-math></inline-formula> has exactly two maximal elements, we explicitly determine the weight distribution of <inline-formula> <tex-math notation="LaTeX">C_{\Delta ^{c}} </tex-math></inline-formula>. We present many optimal linear codes constructed by our method, and we emphasize that we obtain at least 32 new optimal linear codes.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2020.2993179