IMPROVING CAMERA POSE ESTIMATION USING SWARM PARTICLE ALGORITHMS
Most computer vision and photogrammetry applications rely on accurately estimating the camera pose, such as visual navigation, motion tracking, stereo photogrammetry, and structure from motion. The Essential matrix is a well-known model in computer vision that provides information about the relative...
Uložené v:
| Vydané v: | International archives of the photogrammetry, remote sensing and spatial information sciences. Ročník XLVIII-M-3-2023; s. 87 - 93 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
Gottingen
Copernicus GmbH
05.09.2023
Copernicus Publications |
| Predmet: | |
| ISSN: | 2194-9034, 1682-1750, 2194-9034 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Most computer vision and photogrammetry applications rely on accurately estimating the camera pose, such as visual navigation, motion tracking, stereo photogrammetry, and structure from motion. The Essential matrix is a well-known model in computer vision that provides information about the relative orientation between two images, including the rotation and translation, for calibrated cameras with a known camera matrix. To estimate the Essential matrix, the camera calibration matrices, which include focal length and principal point location must be known, and the estimation process typically requires at least five matching points and the use of robust algorithms, such as RANSAC to fit a model to the data as a robust estimator. From the usually large number of matched points, choosing five points, the Essential matrix can be determined based on a simple solution, which could be good or bad. Obtaining a globally optimal and accurate camera pose estimation, however, requires additional steps, such as using evolutionary algorithms (EA) or swarm algorithms (SA), to prevent getting trapped in local optima by searching for solutions within a potentially huge solution space.This paper aims to introduce an improved method for estimating the Essential matrix using swarm particle algorithms that are known to efficiently solve complex problems. Various optimization techniques, including EAs and SAs, such as Particle Swarm Optimization (PSO), Gray Wolf Optimization (GWO), Improved Gray Wolf Optimization (IGWO), Genetic Algorithm (GA), Salp Swarm Algorithm (SSA) and Whale Optimization Algorithm (WOA), are explored to obtain the global minimum of the reprojection error for the five-point Essential matrix estimation based on using symmetric geometric error cost function. The experimental results on a dataset with known camera orientation demonstrate that the IGWO method has achieved the best score compared to other techniques and significantly speeds up the camera pose estimation for larger number of point pairs in contrast to traditional methods that use the collinearity equations in an iterative adjustment. |
|---|---|
| AbstractList | Most computer vision and photogrammetry applications rely on accurately estimating the camera pose, such as visual navigation, motion tracking, stereo photogrammetry, and structure from motion. The Essential matrix is a well-known model in computer vision that provides information about the relative orientation between two images, including the rotation and translation, for calibrated cameras with a known camera matrix. To estimate the Essential matrix, the camera calibration matrices, which include focal length and principal point location must be known, and the estimation process typically requires at least five matching points and the use of robust algorithms, such as RANSAC to fit a model to the data as a robust estimator. From the usually large number of matched points, choosing five points, the Essential matrix can be determined based on a simple solution, which could be good or bad. Obtaining a globally optimal and accurate camera pose estimation, however, requires additional steps, such as using evolutionary algorithms (EA) or swarm algorithms (SA), to prevent getting trapped in local optima by searching for solutions within a potentially huge solution space.This paper aims to introduce an improved method for estimating the Essential matrix using swarm particle algorithms that are known to efficiently solve complex problems. Various optimization techniques, including EAs and SAs, such as Particle Swarm Optimization (PSO), Gray Wolf Optimization (GWO), Improved Gray Wolf Optimization (IGWO), Genetic Algorithm (GA), Salp Swarm Algorithm (SSA) and Whale Optimization Algorithm (WOA), are explored to obtain the global minimum of the reprojection error for the five-point Essential matrix estimation based on using symmetric geometric error cost function. The experimental results on a dataset with known camera orientation demonstrate that the IGWO method has achieved the best score compared to other techniques and significantly speeds up the camera pose estimation for larger number of point pairs in contrast to traditional methods that use the collinearity equations in an iterative adjustment. |
| Author | Elashry, A. Toth, C. |
| Author_xml | – sequence: 1 givenname: A. surname: Elashry fullname: Elashry, A. – sequence: 2 givenname: C. surname: Toth fullname: Toth, C. |
| BookMark | eNpNkd1O4zAQha0VKy2wvEOkvTaMf-Ikd0RVKJYSUiVZ4M5yHHtJBU2xAYm3J20B7dUZjc-c8eg7QUebaWMROidwHpOMX4xh6wPW3jyMbzbg-_JWSokrzDAFynCa7PUHOqazG2fA-NF_9S90FsIaAAgXIob4GF3KatXUt_JmGS3yqmjyaFW3RVS0nazyTtY30d9299je5U0VrfKmk4uyiPJyWTeyu67a3-in04_Bnn3qKequim5xjct6KRd5iQ3NCMMuEcxpw8Gl8x1COEEsNawfmB10n_HEGJdxk4E1Ynb0DEyf2p5nWoATmp0ieYgdJr1WWz8-af-uJj2qfWPy_5T2L6N5tGoeHZJEaBqnwPsY0njgQyKGhDgNlLo5688ha-un51cbXtR6evWb-feKpgIyBoSI2XV1cBk_heCt-95KQO1YqD0L9cVCHVioSjG1Y6DSZK_sA5EQf3E |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ L.G L6V M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.5194/isprs-archives-XLVIII-M-3-2023-87-2023 |
| DatabaseName | CrossRef Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals - NZ |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Visual Arts |
| EISSN | 2194-9034 |
| EndPage | 93 |
| ExternalDocumentID | oai_doaj_org_article_30cd776a25804b5085d4d76d71fa022f 10_5194_isprs_archives_XLVIII_M_3_2023_87_2023 |
| GroupedDBID | 8FE 8FG 8FH AAFWJ AAYXX ABJCF ACIWK ADBBV AEUYN AFFHD AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TUS 7TN ABUWG AZQEC DWQXO F1W H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2913-f763fac40f851966f61e2c3bd3edab947ccf94c90ec6851b30cb8eb49a60f6a3 |
| IEDL.DBID | PIMPY |
| ISSN | 2194-9034 1682-1750 |
| IngestDate | Fri Oct 03 12:52:30 EDT 2025 Fri Jul 25 10:29:24 EDT 2025 Sat Nov 29 04:07:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2913-f763fac40f851966f61e2c3bd3edab947ccf94c90ec6851b30cb8eb49a60f6a3 |
| Notes | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2860930116?pq-origsite=%requestingapplication% |
| PQID | 2860930116 |
| PQPubID | 2037674 |
| PageCount | 7 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_30cd776a25804b5085d4d76d71fa022f proquest_journals_2860930116 crossref_primary_10_5194_isprs_archives_XLVIII_M_3_2023_87_2023 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-05 |
| PublicationDateYYYYMMDD | 2023-09-05 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Gottingen |
| PublicationPlace_xml | – name: Gottingen |
| PublicationTitle | International archives of the photogrammetry, remote sensing and spatial information sciences. |
| PublicationYear | 2023 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| SSID | ssj0001466505 |
| Score | 2.2840056 |
| Snippet | Most computer vision and photogrammetry applications rely on accurately estimating the camera pose, such as visual navigation, motion tracking, stereo... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 87 |
| SubjectTerms | Algorithms Cameras Collinearity Computer vision Cost function Estimation Evolutionary algorithms Genetic algorithms Iterative methods Navigation Optimization techniques Particle swarm optimization Photogrammetry Point pairs Pose estimation Principal point Robustness Solution space Tracking |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals - NZ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBajlLEdxn6ybO3QYVetsi3rx2lLQ5oa4iQkIctNSLIEuaQlbvv390l2RssOu-wkEBY235Pf-570-B5C34EDOyuZIqqhkjCVNUTxWDSeeSm58rAqSeZPxWwmt1u1eNLqK9aEdfLAHXAXBXWNENzkpaTMAp0oG9YI3ogsGIg_IXpfKtSTZCqdrjAO1CPWL2YcKCTESPoSQab6AwgLu9i1t4eWmF7alWynm6qqSE0KEpuJg4NI47NIlQT9__LXKQhdvUVvevaIh91Xv0Mv_P49er3ZtffdbPsB_arqxXK-qWYTPIqiB0O8mK_GeLxaV3U6j8Kx08YEr34PlzVeAJ-tRtMxHk4n82W1vq5XH9H6arweXZO-TQJxucoKEsBFBOMYDcCeIHsJPPO5K2xT-MZYxYRzQTGnqHccnrCAqJXeMmU4DdwUn9DJ_mbvPyPMWelMbpnPXGB55ixnoiybQnphqDLlAP08IqJvOzEMDUlExFQnTPURU91hqmtd6IilliKNA3QZgfyzOopbpwkwue5Nrv9l8gE6O5pB939cq3PJqYrein_5H-_4il6lvRCvjsozdHJ3uPfn6NQ93O3aw7e02R4B-LrPmA priority: 102 providerName: Directory of Open Access Journals |
| Title | IMPROVING CAMERA POSE ESTIMATION USING SWARM PARTICLE ALGORITHMS |
| URI | https://www.proquest.com/docview/2860930116 https://doaj.org/article/30cd776a25804b5085d4d76d71fa022f |
| Volume | XLVIII-M-3-2023 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: PCBAR dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: M7S dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: PIMPY dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9owELVaqKrtpV9blXaLfOjVJR-OE5-2LMqykQhEgCg9WY7tVEgVsAnb39-xCYuqSj31ZCmJpSTPnnkej98g9Bk4sCoTygnXXkIo9zXhzCaN-yZJGDfQy0nmT-LpNFmvedEej27atMqTTXSG-qj2bPO2wQgP9E7ZiPkgSBgsxe0mwvX-ntgaUnavtS2o8RR1rfAW7aBukeXF93PMhTIgJDar0WdALMFzes8RrF-_AI2hg02zrxsiW8FXsp6ssiwjOQmJLTEOZsO1f_gvJ_P_lxV3run25f_9qFfo8nwGEBeP3u01emK2b9CL1aZ5kD_xsD40b9FX-Oz5bJVNx3hk9RWGuJgtUpwullnuQl_YFvUY48W34TzHBVDnbDRJ8XAyns2z5V2-uETL23Q5uiNtRQaiAu6HpAJrVElFvQqIGiyUKuabQIWlDo2WJaexUhWnintGMXiiDD0YCKakXDKvYjJ8hzrb3da8R5jRSMmgpMZXFQ18VTIaR5EOExNLj8uoh65Pv1nsj7obAtYrFijhgBInoMQRKJGLUFiARBK7toduLDqPva2Otruwq3-IdloKeEEdx0wGUeLREshqpKmOmY79SgK7qXro6gScaCd3I844ffj37Y_owg0du_8UXaHOoX4wn9Az9euwaeo-6t6k02Led2GAvk06XfTbEfsbyFnxIA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLfGhvi48DW0wgAfgJtZPhwnPiDIStdGS9qojbreLMdxpkqoLUkH4o_if-Q5S1YhJG47cLKUxIkd__ze79nP7yH0FjiwygPKCS-sgFBuF4Qz4zRu6yBgXEOtJmR-7I_HwWLB0z30qzsLY9wqO5nYCOpircwa-YkTMDC-zbZB60F5rn_-APus_hh9gcF85zhng6w_Im0KAaIcbrukhOlTSkWtEpgFMPuS2dpRbl64upA5p75SJaeKW1oxeCJ3LWi5zimXzCqZdOG17zffiElSZTZz24wdd9AB9IOCrXeQ9k_D6W5RhzJgPMZt0mbAXEE1W_cQGMgf4OP0ZFlvqprINqIsWcTzKIpIQlxicpiDXGrKPxRkk0fgLzXR6L6zR__ZX3uMDnenGHF6o5-foD29eooezpf1lfyKw2pbP0OfoySdTubReIj7JkJEiNPJbIAHsyxKmsU7bNKSDPHsIpwmOAXyH_XjAQ7j4WQaZaNkdoiy2-jac7S_Wq_0EcKMeko6OdW2Kqljq5xR3_MKN9C-tLj0euhTN45icx05RIDFZZAgGiSIDgniGgkiEa4wCBCB35Q9dGqG_6a2iQTeXFhXl6IVLAIaWPg-k44XWDQHuu0VtPBZ4dulBH5W9tBxhwzRiqda7GDx4t-336D7oyyJRRyNz1-iBw1OzW6ad4z2t9WVfoXuqu_bZV29bqcCRuKWkfUbBc0_kA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.atitle=IMPROVING+CAMERA+POSE+ESTIMATION+USING+SWARM+PARTICLE+ALGORITHMS&rft.au=Elashry%2C+A&rft.au=Toth%2C+C&rft.date=2023-09-05&rft.pub=Copernicus+GmbH&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XLVIII-M-3-2023&rft.spage=87&rft.epage=93&rft_id=info:doi/10.5194%2Fisprs-archives-XLVIII-M-3-2023-87-2023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon |