Fixed-Parameter Tractability of Multicut Parameterized by the Size of the Cutset

Given an undirected graph $G$, a collection $\{(s_1,t_1), \dots, (s_{k},t_{k})\}$ of pairs of vertices, and an integer ${{p}}$, the Edge Multicut problem asks if there is a set $S$ of at most ${{p}}$ edges such that the removal of $S$ disconnects every $s_i$ from the corresponding $t_i$. Vertex Mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing Jg. 43; H. 2; S. 355 - 388
Hauptverfasser: Marx, Dániel, Razgon, Igor
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.01.2014
Schlagworte:
ISSN:0097-5397, 1095-7111
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an undirected graph $G$, a collection $\{(s_1,t_1), \dots, (s_{k},t_{k})\}$ of pairs of vertices, and an integer ${{p}}$, the Edge Multicut problem asks if there is a set $S$ of at most ${{p}}$ edges such that the removal of $S$ disconnects every $s_i$ from the corresponding $t_i$. Vertex Multicut is the analogous problem where $S$ is a set of at most ${{p}}$ vertices. Our main result is that both problems can be solved in time $2^{O({{p}}^3)}\cdot n^{O(1)}$, i.e., fixed-parameter tractable parameterized by the size ${{p}}$ of the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the form $f({{p}})\cdot n^{O(1)}$ exists for the directed version of the problem, as we show it to be W[1]-hard parameterized by the size of the cutset. [PUBLICATION ABSTRACT]
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0097-5397
1095-7111
DOI:10.1137/110855247