Fixed-Parameter Tractability of Multicut Parameterized by the Size of the Cutset
Given an undirected graph $G$, a collection $\{(s_1,t_1), \dots, (s_{k},t_{k})\}$ of pairs of vertices, and an integer ${{p}}$, the Edge Multicut problem asks if there is a set $S$ of at most ${{p}}$ edges such that the removal of $S$ disconnects every $s_i$ from the corresponding $t_i$. Vertex Mult...
Gespeichert in:
| Veröffentlicht in: | SIAM journal on computing Jg. 43; H. 2; S. 355 - 388 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2014
|
| Schlagworte: | |
| ISSN: | 0097-5397, 1095-7111 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Given an undirected graph $G$, a collection $\{(s_1,t_1), \dots, (s_{k},t_{k})\}$ of pairs of vertices, and an integer ${{p}}$, the Edge Multicut problem asks if there is a set $S$ of at most ${{p}}$ edges such that the removal of $S$ disconnects every $s_i$ from the corresponding $t_i$. Vertex Multicut is the analogous problem where $S$ is a set of at most ${{p}}$ vertices. Our main result is that both problems can be solved in time $2^{O({{p}}^3)}\cdot n^{O(1)}$, i.e., fixed-parameter tractable parameterized by the size ${{p}}$ of the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the form $f({{p}})\cdot n^{O(1)}$ exists for the directed version of the problem, as we show it to be W[1]-hard parameterized by the size of the cutset. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0097-5397 1095-7111 |
| DOI: | 10.1137/110855247 |