Age-Aware Data Selection and Aggregator Placement for Timely Federated Continual Learning in Mobile Edge Computing

Federated continual learning (FCL) is emerging as a key technology for time-sensitive applications in highly adaptive environments including autonomous driving and industrial digital twin. Each FCL trains machine learning models using newly-generated datasets as soon as possible, to obtain a highly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers Jg. 73; H. 2; S. 466 - 480
Hauptverfasser: Xu, Zichuan, Wang, Lin, Liang, Weifa, Xia, Qiufen, Xu, Wenzheng, Zhou, Pan, Rana, Omer F.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9340, 1557-9956
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Federated continual learning (FCL) is emerging as a key technology for time-sensitive applications in highly adaptive environments including autonomous driving and industrial digital twin. Each FCL trains machine learning models using newly-generated datasets as soon as possible, to obtain a highly accurate machine learning model for new event predictions. The age of data , defined as the time difference between the generation time of a dataset and the current time, is widely adopted as a key criterion to evaluate both timeline and quality of training. In this paper, we study the problem of age-aware FCL in a mobile edge computing (MEC) network. We not only investigate optimization techniques that optimize the data selection and aggregator placement for FCL but also implement a real system as a prototype for age-aware FCL. Specifically, we first propose an approximation algorithm with a provable approximation ratio for the age-aware data selection and aggregator placement problem for FCL with a single request. In real application scenarios, there are usually multiple FCL requests that require to train models, and delays in the MEC network are usually uncertain. We then study the problem of age-aware data selection and aggregator placement problem for FCL with uncertain delays and multiple requests, by devising an online learning algorithm with a bounded regret based on contextual bandits. We finally implement a prototype for FCL in an MEC network, with various heterogeneous user equipments (UEs) and cloudlets with different computing capabilities in the network. Experiment results show that the performance of the proposed algorithms outperform existing studies, by achieving 47% lower age of data and 12% higher model accuracy.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9340
1557-9956
DOI:10.1109/TC.2023.3333213