Tactile Object Recognition With Recurrent Neural Networks Through a Perceptive Soft Gripper

Soft robot perception integrates information from distributed, multi-modal sensors, broadening their application to active interaction. Our work introduces recurrent learning models for tactile-based object recognition, demonstrating comparable performance in virtual and real-world scenarios. The wo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 10; číslo 7; s. 7023 - 7030
Hlavní autoři: Donato, Enrico, Pelliccia, David, Hosseinzadeh, Matin, Amiri, Mahmood, Falotico, Egidio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Soft robot perception integrates information from distributed, multi-modal sensors, broadening their application to active interaction. Our work introduces recurrent learning models for tactile-based object recognition, demonstrating comparable performance in virtual and real-world scenarios. The work focuses on soft grippers, which facilitate adaptation to objects of varying shapes and sizes thanks to passive finger compliance. Our model successfully identifies over sixteen heterogeneous objects. Findings underscore the significance of sensory multi-modality over single. We highlight how spatial distribution and sensory signal dynamics influence overall estimation accuracy, and what the minimal grasp set is to achieve certain recognition.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2025.3572422